CONSISTENT ESTIMATION OF ZERO-INFLATED COUNT MODELS

被引:37
|
作者
Staub, Kevin E. [1 ]
Winkelmann, Rainer [1 ,2 ,3 ]
机构
[1] Univ Zurich, CH-8032 Zurich, Switzerland
[2] CESifo, Munich, Germany
[3] IZA, Bonn, Germany
关键词
excess zeros; Poisson; logit; unobserved heterogeneity; misspecification; MAXIMUM-LIKELIHOOD METHODS; HEALTH-CARE UTILIZATION; POISSON REGRESSION;
D O I
10.1002/hec.2844
中图分类号
F [经济];
学科分类号
02 ;
摘要
Applications of zero-inflated count data models have proliferated in health economics. However, zero-inflated Poisson or zero-inflated negative binomial maximum likelihood estimators are not robust to misspecification. This article proposes Poisson quasi-likelihood estimators as an alternative. These estimators are consistent in the presence of excess zeros without having to specify the full distribution. The advantages of the Poisson quasi-likelihood approach are illustrated in a series of Monte Carlo simulations and in an application to the demand for health services. Copyright (c) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:673 / 686
页数:14
相关论文
共 50 条
  • [1] Estimation and selection for spatial zero-inflated count models
    Shen, Chung-Wei
    Chen, Chun-Shu
    [J]. ENVIRONMETRICS, 2024, 35 (04)
  • [2] Zero-inflated models and estimation in zero-inflated Poisson distribution
    Wagh, Yogita S.
    Kamalja, Kirtee K.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (08) : 2248 - 2265
  • [3] Zero-inflated models with application to spatial count data
    Agarwal, DK
    Gelfand, AE
    Citron-Pousty, S
    [J]. ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2002, 9 (04) : 341 - 355
  • [4] Marginal zero-inflated regression models for count data
    Martin, Jacob
    Hall, Daniel B.
    [J]. JOURNAL OF APPLIED STATISTICS, 2017, 44 (10) : 1807 - 1826
  • [5] Forecasting Civil Conflict with Zero-Inflated Count Models
    Bagozzi, Benjamin E.
    [J]. CIVIL WARS, 2015, 17 (01) : 1 - 24
  • [6] Zero-inflated models with application to spatial count data
    Deepak K. Agarwal
    Alan E. Gelfand
    Steven Citron-Pousty
    [J]. Environmental and Ecological Statistics, 2002, 9 : 341 - 355
  • [7] Marginal Mean Models for Zero-Inflated Count Data
    Todem, David
    Kim, KyungMann
    Hsu, Wei-Wen
    [J]. BIOMETRICS, 2016, 72 (03) : 986 - 994
  • [8] Zero-inflated Bell regression models for count data
    Lemonte, Artur J.
    Moreno-Arenas, German
    Castellares, Fredy
    [J]. JOURNAL OF APPLIED STATISTICS, 2020, 47 (02) : 265 - 286
  • [9] Zero-inflated modeling part I: Traditional zero-inflated count regression models, their applications, and computational tools
    Young, Derek S.
    Roemmele, Eric S.
    Yeh, Peng
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2022, 14 (01):
  • [10] Odds Ratio Estimation for Small Count in Zero-Inflated Poisson
    Raweesawat, Kobkun
    Jampachaisri, Katechan
    [J]. IEEE ACCESS, 2020, 8 : 217317 - 217323