Nickel silicidation techniques for strained Si1−xGex, Si1−x−yGexCy, and Si1−yCy alloys material-device applications

被引:0
|
作者
Zhongha Shi
David Onsongo
Xiao Chen
Dong-won Kim
Renee E. Nieh
Sanjay K. Banerjee
机构
[1] The University of Texas at Austin,Microelectronics Research Center
来源
关键词
Nickel; silicide; Si; Ge; Si; Ge; C; Si; C; alloys; resistivity; MOSFET;
D O I
暂无
中图分类号
学科分类号
摘要
A nickel silicide process for Si1-xGex, Si1-x-yGexCy, and Si1-yCy alloy materials compatible with Si technology has been developed. Low-resistivity-phase (12–20 µΘ cm) nickel silicides have been obtained for these alloys with different low sheet-resistance temperature windows. The study shows that thin (15–18 nm) silicide layers with high crystalline quality, smooth silicide surface, and smooth interface between silicide and the underlying material are achievable. The technique could be used to combine the benefits of Ni silicide and Si1-xGex, Si1-x-yGexCy, and Si1-yCy alloys. The technique is promising for Si or Si1-xGex, Si1-x-yGexCy, and Si1-yCy alloy-based metal-oxide semiconductor, field-effect transistors (MOSFETs) or other device applications.
引用
收藏
页码:184 / 190
页数:6
相关论文
共 50 条
  • [1] Nickel silicidation techniques for strained Si1-xGex, Si1-x-yGexCy, and Si1-yCy alloys material-device applications
    Shi, ZH
    Onsongo, D
    Chen, X
    Kim, DW
    Nieh, RE
    Banerjee, SK
    JOURNAL OF ELECTRONIC MATERIALS, 2003, 32 (03) : 184 - 190
  • [2] ELECTRONIC STRUCTURE OF Si/Si1 - XGeX AND Si/ Si1 - XSnX STRAINED LAYER SUPERLATTICES.
    Morrison, Ian
    Jaros, M.
    Superlattices and Microstructures, 1986, 2 (04) : 329 - 333
  • [3] Electrical properties of Si1−x−yGexCy and Ge1−yCy alloys
    F. Chen
    R. T. Tröger
    K. Roe
    M. D. Dashell
    R. Jonczyk
    D. S. Holmes
    R. G. Wilson
    J. Kolodzey
    Journal of Electronic Materials, 1997, 26 : 1371 - 1375
  • [4] Hole mobility of strained Si/(001)Si1−xGex
    XiaoYan Wang
    HeMing Zhang
    JianLi Ma
    GuanYu Wang
    JiangTao Qu
    Science China Physics, Mechanics and Astronomy, 2012, 55 : 48 - 54
  • [5] Hole scattering mechanism of strained Si/(111)Si1−xGex
    Cheng Wang
    HeMing Zhang
    JianJun Song
    HuiYong Hu
    Science China Physics, Mechanics and Astronomy, 2011, 54
  • [6] Valence band structure of strained Si/(111)Si1−xGex
    JianJun Song
    HeMing Zhang
    HuiYong Hu
    XianYing Dai
    RongXi Xuan
    Science China Physics, Mechanics and Astronomy, 2010, 53 : 454 - 457
  • [7] Point defect redistribution in Si1−xGex alloys
    A. D. N. Paine
    A. F. W. Willoughby
    J. M. Bonar
    Journal of Materials Science: Materials in Electronics, 1999, 10 : 339 - 343
  • [8] Composition determination of Si/Si1−xGex/Si by photoreflectance spectroscopy
    Changchun Chen
    P. V. Kelly
    Zhihong Liu
    Wentao Huang
    Weizhi Dou
    Pei-Hsin Tsien
    Metals and Materials International, 2004, 10 : 489 - 492
  • [9] Carrier mobility in Si1 − xGex crystals
    E. V. Khutsishvili
    L. L. Gabrichidze
    O. A. Tsagareishvili
    N. V. Kobulashvili
    Inorganic Materials, 2009, 45 : 599 - 601
  • [10] Thermoelectric effect in the graded band gap Si1–xGex (0.2 ≤ x ≤ 1), Si1–xGex (0.5 ≤ x ≤ 1) solid solutions dependent on the gap difference
    Leiderman A.Y.
    Saidov A.S.
    Karshiev A.B.
    Applied Solar Energy, 2017, 53 (1) : 13 - 15