Improved upper bounds for partial spreads

被引:0
|
作者
Sascha Kurz
机构
[1] University of Bayreuth,Department of Mathematics
来源
关键词
Galois geometry; Partial spreads; Constant dimension codes; Vector space partitions; Orthogonal arrays; -nets; 51E23; 05B15; 05B40; 11T71; 94B25;
D O I
暂无
中图分类号
学科分类号
摘要
A partial (k-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k-1)$$\end{document}-spread in PG(n-1,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {PG}}(n-1,q)$$\end{document} is a collection of (k-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k-1)$$\end{document}-dimensional subspaces with trivial intersection. So far, the maximum size of a partial (k-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k-1)$$\end{document}-spread in PG(n-1,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {PG}}(n-1,q)$$\end{document} was known for the cases n≡0(modk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\equiv 0\pmod k$$\end{document}, n≡1(modk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\equiv 1\pmod k$$\end{document}, and n≡2(modk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\equiv 2\pmod k$$\end{document} with the additional requirements q=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=2$$\end{document} and k=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=3$$\end{document}. We completely resolve the case n≡2(modk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\equiv 2\pmod k$$\end{document} for the binary case q=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=2$$\end{document}.
引用
收藏
页码:97 / 106
页数:9
相关论文
共 50 条
  • [11] Improved Upper Bounds on the Crossing Number
    Dujmovic, Vida
    Kawarabayashi, Ken-ichi
    Mohar, Bojan
    Wood, David R.
    PROCEEDINGS OF THE TWENTY-FOURTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SGG'08), 2008, : 375 - 384
  • [12] Improved upper bounds for vertex cover
    Chen, Jianer
    Kanj, Iyad A.
    Xia, Ge
    THEORETICAL COMPUTER SCIENCE, 2010, 411 (40-42) : 3736 - 3756
  • [13] Improved upper bounds for approximation by zonotopes
    Matousek, J
    ACTA MATHEMATICA, 1996, 177 (01) : 55 - 73
  • [14] EMBEDDING OF PARTIAL SPREADS IN SPREADS
    BEUTELSPACHER, A
    ARCHIV DER MATHEMATIK, 1978, 30 (03) : 317 - 324
  • [15] SPREADS COVERED BY DERIVABLE PARTIAL SPREADS
    WALKER, M
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1985, 38 (02) : 113 - 130
  • [16] Improved Upper Bounds on the Hermite and KZ Constants
    Wen, Jinming
    Chang, Xiao-Wen
    Weng, Jian
    2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 1742 - 1746
  • [17] Improved Upper Bounds on Acyclic Edge Colorings
    Wu, Yu-wen
    Yan, Gui-ying
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2014, 30 (02): : 305 - 308
  • [18] IMPROVED UPPER BOUNDS FOR ODD MULTIPERFECT NUMBERS
    Chen, Yong-Gao
    Tang, Cui-E
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 89 (03) : 353 - 359
  • [19] Improved upper bounds on acyclic edge colorings
    Yu-wen Wu
    Gui-ying Yan
    Acta Mathematicae Applicatae Sinica, English Series, 2014, 30 : 305 - 308
  • [20] IMPROVED UPPER MATRIX BOUNDS FOR THE DALE SOLUTION
    Savov, Svetoslav
    Popchev, Ivan
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2014, 67 (04): : 571 - 576