Improved upper bounds for partial spreads

被引:0
|
作者
Sascha Kurz
机构
[1] University of Bayreuth,Department of Mathematics
来源
关键词
Galois geometry; Partial spreads; Constant dimension codes; Vector space partitions; Orthogonal arrays; -nets; 51E23; 05B15; 05B40; 11T71; 94B25;
D O I
暂无
中图分类号
学科分类号
摘要
A partial (k-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k-1)$$\end{document}-spread in PG(n-1,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {PG}}(n-1,q)$$\end{document} is a collection of (k-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k-1)$$\end{document}-dimensional subspaces with trivial intersection. So far, the maximum size of a partial (k-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k-1)$$\end{document}-spread in PG(n-1,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {PG}}(n-1,q)$$\end{document} was known for the cases n≡0(modk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\equiv 0\pmod k$$\end{document}, n≡1(modk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\equiv 1\pmod k$$\end{document}, and n≡2(modk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\equiv 2\pmod k$$\end{document} with the additional requirements q=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=2$$\end{document} and k=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=3$$\end{document}. We completely resolve the case n≡2(modk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\equiv 2\pmod k$$\end{document} for the binary case q=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=2$$\end{document}.
引用
收藏
页码:97 / 106
页数:9
相关论文
共 50 条
  • [1] Improved upper bounds for partial spreads
    Kurz, Sascha
    DESIGNS CODES AND CRYPTOGRAPHY, 2017, 85 (01) : 97 - 106
  • [2] Improved Upper Bounds for Partial Vertex Cover
    Kneis, Joachim
    Langer, Alexander
    Rossmanith, Peter
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2008, 5344 : 240 - 251
  • [3] UPPER BOUNDS ON THE UNIFORM SPREADS OF THE SPORADIC SIMPLE GROUPS
    Rahimipour, Ali Reza
    Farzaneh, Yousof
    INTERNATIONAL JOURNAL OF GROUP THEORY, 2019, 8 (03) : 15 - 31
  • [4] NEW UPPER BOUNDS ON THE SPREADS OF THE SPORADIC SIMPLE GROUPS
    Fairbairn, Ben
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (05) : 1872 - 1877
  • [5] Improved upper bounds for the Steiner ratio
    Ismailescu, Dan
    Park, Joseph
    DISCRETE OPTIMIZATION, 2014, 11 : 22 - 30
  • [6] Improved upper bounds on stopping redundancy
    Han, Junsheng
    Siegel, Paul H.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (01) : 90 - 104
  • [7] Upper bounds for MaxSat: Further improved
    Bansal, N
    Raman, V
    ALGORITHMS AND COMPUTATIONS, 2000, 1741 : 247 - 258
  • [8] Improved upper bounds on sizes of codes
    Mounits, B
    Etzion, T
    Litsyn, S
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (04) : 880 - 886
  • [9] IMPROVED UPPER-BOUNDS ON SHELLSORT
    INCERPI, J
    SEDGEWICK, R
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1985, 31 (02) : 210 - 224
  • [10] Improved upper bounds for pairing heaps
    Iacono, J
    ALGORITHM THEORY - SWAT 2000, 2000, 1851 : 32 - 45