Zero-free neighborhoods around the unit circle for Kac polynomials

被引:0
|
作者
Gerardo Barrera
Paulo Manrique
机构
[1] University of Helsinki,Department of Mathematics and Statistics
[2] National Polytechnic Institute,General Coordination of Institutional Organization and Information
来源
关键词
Locally sub-Gaussian random variables; Salem–Zygmund type inequalities; Small ball probability; Zeros of random polynomials; Primary 60G99; 12D10; Secondary; 11CXX; 30C15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study how the roots of the Kac polynomials Wn(z)=∑k=0n-1ξkzk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_n(z) = \sum _{k=0}^{n-1} \xi _k z^k$$\end{document} concentrate around the unit circle when the coefficients of Wn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_n$$\end{document} are independent and identically distributed nondegenerate real random variables. It is well known that the roots of a Kac polynomial concentrate around the unit circle as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document} if and only if E[log(1+|ξ0|)]<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {E}}[\log ( 1+ |\xi _0|)]<\infty $$\end{document}. Under the condition E[ξ02]<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {E}}[\xi ^2_0]<\infty $$\end{document}, we show that there exists an annulus of width O(n-2(logn)-3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {O}}(n^{-2}(\log n)^{-3})$$\end{document} around the unit circle which is free of roots with probability 1-O((logn)-1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-{\text {O}}({(\log n)^{-{1}/{2}}})$$\end{document}. The proof relies on small ball probability inequalities and the least common denominator used in [17].
引用
收藏
页码:159 / 176
页数:17
相关论文
共 50 条
  • [41] On universal entire functions with zero-free derivatives
    BernalGonzalez, L
    [J]. ARCHIV DER MATHEMATIK, 1997, 68 (02) : 145 - 150
  • [42] ZERO-FREE REGIONS FOR EXPONENTIAL-SUMS
    STOLARSKY, KB
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 83 (03) : 486 - 488
  • [43] Zero-free regions for Dirichlet series (II)
    Delaunay, C.
    Fricain, E.
    Mosaki, E.
    Robert, O.
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2013, 273 (3-4) : 999 - 1023
  • [44] ZERO-FREE REGIONS OF ZETA(K) (S)
    SPIRA, R
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1965, 40 (160P): : 677 - &
  • [45] NORMAL FAMILIES OF ZERO-FREE MEROMORPHIC FUNCTIONS
    Deng, Bingmao
    Fang, Mingliang
    Liu, Dan
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 91 (03) : 313 - 322
  • [46] On universal entire functions with zero-free derivatives
    Luis Bernal-González
    [J]. Archiv der Mathematik, 1997, 68 : 145 - 150
  • [47] ON ZERO-FREE UNIVERSAL ENTIRE-FUNCTIONS
    HERZOG, G
    [J]. ARCHIV DER MATHEMATIK, 1994, 63 (04) : 329 - 332
  • [48] Normality and Quasinormality of Zero-free Meromorphic Functions
    Jian Ming CHANG
    [J]. Acta Mathematica Sinica, 2012, 28 (04) : 707 - 716
  • [49] ZERO-FREE REGIONS OF ZETA(K)(S)
    BRAUNE, E
    [J]. MONATSHEFTE FUR MATHEMATIK, 1976, 82 (01): : 17 - 26
  • [50] Zero-free regions for Dirichlet series (II)
    C. Delaunay
    E. Fricain
    E. Mosaki
    O. Robert
    [J]. Mathematische Zeitschrift, 2013, 273 : 999 - 1023