Zero-free neighborhoods around the unit circle for Kac polynomials

被引:0
|
作者
Gerardo Barrera
Paulo Manrique
机构
[1] University of Helsinki,Department of Mathematics and Statistics
[2] National Polytechnic Institute,General Coordination of Institutional Organization and Information
来源
关键词
Locally sub-Gaussian random variables; Salem–Zygmund type inequalities; Small ball probability; Zeros of random polynomials; Primary 60G99; 12D10; Secondary; 11CXX; 30C15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study how the roots of the Kac polynomials Wn(z)=∑k=0n-1ξkzk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_n(z) = \sum _{k=0}^{n-1} \xi _k z^k$$\end{document} concentrate around the unit circle when the coefficients of Wn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W_n$$\end{document} are independent and identically distributed nondegenerate real random variables. It is well known that the roots of a Kac polynomial concentrate around the unit circle as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document} if and only if E[log(1+|ξ0|)]<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {E}}[\log ( 1+ |\xi _0|)]<\infty $$\end{document}. Under the condition E[ξ02]<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {E}}[\xi ^2_0]<\infty $$\end{document}, we show that there exists an annulus of width O(n-2(logn)-3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {O}}(n^{-2}(\log n)^{-3})$$\end{document} around the unit circle which is free of roots with probability 1-O((logn)-1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-{\text {O}}({(\log n)^{-{1}/{2}}})$$\end{document}. The proof relies on small ball probability inequalities and the least common denominator used in [17].
引用
收藏
页码:159 / 176
页数:17
相关论文
共 50 条