Kinetic modelling of the pyrolysis of Miscanthus × Giganteus from the thermogravimetric analysis of its fractionated components

被引:0
|
作者
Salvatore Collura
Bruno Azambre
Jean-Victor Weber
机构
[1] Université de Metz- Rue Victor Demange,Laboratoire de Chimie et Applications (EA 3471)
关键词
Miscanthus; Thermogravimetry; Kinetic parameters; Ozawa-Flynn-Wall method; Chemical fractionation;
D O I
10.1007/s10311-005-0007-0
中图分类号
学科分类号
摘要
In this paper the thermal behaviour of Miscanthus × Giganteus (M×G) is studied by thermogravimetric analysis. In order to characterise the thermal behaviour of its cellulose, hemicellulose and lignin, the raw M×G material was treated sequentially by water, H2SO4 and KOH. The global kinetic parameters for each component were determined by subsequent modelling of the TG data with the Ozawa-Flynn-Wall method and multivariate non-linear regression. It is found that the global pyrolysis of M×G can be satisfactorily described using a six steps-kinetic scheme. The analytical method proposed here can be probably extended without too many efforts to other biomass products.
引用
收藏
页码:95 / 99
页数:4
相关论文
共 50 条
  • [31] Kinetic modeling of deoiled asphaltene particle pyrolysis in thermogravimetric analysis
    Cheng, Yan
    Yan, Binhang
    Li, Tianyang
    Cheng, Yi
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2016, 124 (03) : 1661 - 1670
  • [32] A Hybrid Kinetic Analysis of the Biosolids Pyrolysis using Thermogravimetric Analyser
    Patel, Savankumar R.
    Kundu, Sazal K.
    Halder, Pobitra K.
    Setiawan, Adi
    Paz-Ferreiro, Jorge
    Surapaneni, Aravind
    Shah, Kalpit, V
    CHEMISTRYSELECT, 2018, 3 (47): : 13400 - 13407
  • [33] Improved fast pyrolysis bio-oils from straw and miscanthus by fractionated condensation
    Conrad, Stefan
    Blajin, Cristina
    Schulzke, Tim
    Deerberg, Goerge
    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2022, 41 (01)
  • [34] DIESEL PRODUCTION BY FAST PYROLYSIS OF MISCANTHUS GIGANTEUS, WELL-TO-PUMP ANALYSIS USING THE GREET MODEL
    Peric, Milica M.
    Komatina, Mirko S.
    Avtonijevic, Dragi Lj.
    Bugarski, Branko M.
    Dzeletovic, Zeljko S.
    THERMAL SCIENCE, 2019, 23 (01): : 365 - 378
  • [35] Kinetic modelling of waste wood devolatilization during pyrolysis based on thermogravimetric data and solar pyrolysis reactor performance
    Sobek, Szymon
    Werle, Sebastian
    FUEL, 2020, 261
  • [36] Characteristics and kinetic studies of Hydrilla verticillata pyrolysis via thermogravimetric analysis
    Hu, Zhiquan
    Chen, Zhihua
    Li, Genbao
    Chen, Xiaojuan
    Hu, Mian
    Laghari, Mahmood
    Wang, Xun
    Guo, Dabin
    BIORESOURCE TECHNOLOGY, 2015, 194 : 364 - 372
  • [37] Pyrolysis Kinetic Parameters of Omari Oil Shale Using Thermogravimetric Analysis
    Abu El-Rub, Ziad
    Kujawa, Joanna
    Al-Gharabli, Samer
    ENERGIES, 2020, 13 (16)
  • [38] Thermogravimetric analysis and pyrolysis kinetic study of Malaysian refuse derived fuels
    Miskolczi, N.
    Buyong, F.
    Williams, P. T.
    JOURNAL OF THE ENERGY INSTITUTE, 2010, 83 (03) : 125 - 132
  • [39] Pyrolysis kinetics and thermodynamic parameters of bamboo residues and its three main components using thermogravimetric analysis
    Li, Yingkai
    Chai, Meiyun
    Li, Chong
    Yellezuome, Dominic
    Liu, Ronghou
    BIOMASS & BIOENERGY, 2023, 170
  • [40] A Kinetic Study on Combustible Coastal Debris Pyrolysis via Thermogravimetric Analysis
    Song, Eunhye
    Kim, Daegi
    Jeong, Cheol-Jin
    Kim, Do-Yong
    ENERGIES, 2019, 12 (05)