Thermoelectric Properties of Bi0.5Sb1.5Te3 Prepared by Liquid-Phase Growth Using a Sliding Boat

被引:0
|
作者
Hiroyuki Kitagawa
Teppei Takino
Tatsuya Tsukutani
Toshihito Kato
Masao Nanba
Kin-ya Kamata
机构
[1] Shimane University,Department of Materials Science
[2] Mitsui Engineering and Shipbuilding Co. Ltd.,Chiba Technology Center
[3] Mitsui Engineering and Shipbuilding Co. Ltd.,Tamano Technology Center
来源
关键词
Bismuth-antimony telluride; liquid-phase growth; thermoelectric property; carrier concentration;
D O I
暂无
中图分类号
学科分类号
摘要
A liquid-phase growth process using a graphite sliding boat was applied for synthesis of p-type Bi0.5Sb1.5Te3. The process lasted only 60 min, including rapid heating for melting, boat-sliding, and cooling. Thick sheets and bars of 1 mm and 2 mm in thickness having preferable crystal orientation for thermoelectric conversion were successfully prepared by the process. Control of carrier concentration was attempted through addition of excess tellurium (1 mass% to 10 mass%) to optimize the thermoelectric properties of the material. The Hall carrier concentration was found to be decreased by addition of excess tellurium. The electrical resistivity and Seebeck coefficient varied depending on the carrier concentration. As a result, the maximum observed power factor near 300 K was 4.4 × 10−3 W/K2m, with corresponding Hall carrier concentration of 4.6 × 1025 m−3. Thus, thermoelectric properties were controllable by addition of excess tellurium, and a large power factor was thus obtained through a simple and short process.
引用
收藏
页码:2043 / 2047
页数:4
相关论文
共 50 条
  • [31] Preparation and Enhanced Thermoelectric Properties of Cu/Bi0.5Sb1.5Te3 Composite Materials
    Zhu, Wanting
    Hu, Wenhua
    Wei, Ping
    Nie, Xiaolei
    Zhao, Wenyu
    JOURNAL OF ELECTRONIC MATERIALS, 2020, 49 (05) : 2962 - 2967
  • [32] Remarkably Enhanced Thermoelectric Properties of PEDOT:PSS/Bi0.5Sb1.5Te3 Composites
    Zhou Ying
    Gan Guoyou
    Yi Jianhong
    Feng Jing
    Shi Xiaoli
    Ge Zhenhua
    RARE METAL MATERIALS AND ENGINEERING, 2019, 48 (12) : 4088 - 4092
  • [33] Thermoelectric properties of Bi0.5Sb1.5Te3/polyaniline composites prepared by mechanical blending and in-situ polymerization
    Hu, Shu-Hong
    Pei, Hao-Dong
    Zhao, Xin-Bing
    Transactions of Nonferrous Metals Society of China (English Edition), 2001, 11 (06): : 876 - 878
  • [34] Effects of AgSnSe2 addition on the thermoelectric properties of Bi0.5Sb1.5Te3
    Niu, Xin
    Lang, Yudong
    Pan, Lin
    Wang, Yifeng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 956
  • [35] Thermoelectric measurements on Bi0.5Sb1.5Te3 under hydrostatic pressure
    Nishigori, S.
    Araki, H.
    Kitagawa, H.
    Hasezaki, K.
    ICT'06: XXV INTERNATIONAL CONFERENCE ON THERMOELECTRICS, PROCEEDINGS, 2006, : 556 - +
  • [36] Screening metal diffusion barriers for thermoelectric Bi0.5Sb1.5Te3
    Liu, Min
    Li, Wen
    Pei, Yanzhong
    SCIENCE CHINA-MATERIALS, 2024, 67 (01) : 289 - 294
  • [37] Effect of conditions of preparation on the thermoelectric properties of solid solutions of Bi0.5Sb1.5Te3
    Ivanov A.S.
    Kalinin Y.E.
    Mikhailov A.V.
    Shuvaev A.S.
    Chuiko A.G.
    Bavykin V.V.
    Bulletin of the Russian Academy of Sciences: Physics, 2016, 80 (9) : 1141 - 1143
  • [38] A comprehensive investigation into thermoelectric properties of PEDOT:PSS/Bi0.5Sb1.5Te3 composites
    Masoumi, Saeed
    Zhussupbekov, Kuanysh
    Prochukhan, Nadezda
    Morris, Michael A.
    Pakdel, Amir
    JOURNAL OF MATERIALS CHEMISTRY C, 2024, 12 (36) : 14314 - 14329
  • [39] Enhanced thermoelectric properties of Bi0.5Sb1.5Te3/PbTe@C nanocomposites
    Xiang, Bo
    Li, Jiayong
    Liu, Jiaqin
    Yan, Jian
    Wu, Yucheng
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2022, 169
  • [40] The influential mechanism of Ti doping on thermoelectric properties of Bi0.5Sb1.5Te3 alloy
    Bo Feng
    Yong Tang
    Juan Lei
    Journal of Materials Science: Materials in Electronics, 2021, 32 : 28534 - 28541