Weak- and strong-type inequality for the cone-like maximal operator in variable Lebesgue spaces

被引:0
|
作者
Kristóf Szarvas
Ferenc Weisz
机构
[1] Eötvös L. University,Department of Numerical Analysis
[2] Pázmány P. Sétány 1/C.,undefined
来源
关键词
variable Lebesgue space; maximal operator; γ-rectangle; Besicovitch’s covering theorem; weak-type inequality; strong-type inequality; 42B25; 42B35; 52C17;
D O I
暂无
中图分类号
学科分类号
摘要
The classical Hardy-Littlewood maximal operator is bounded not only on the classical Lebesgue spaces Lp(Rd) (in the case p > 1), but (in the case when 1/p(·) is log-Hölder continuous and p- = inf{p(x): x ∈ Rd > 1) on the variable Lebesgue spaces Lp(·)(Rd), too. Furthermore, the classical Hardy-Littlewood maximal operator is of weak-type (1, 1). In the present note we generalize Besicovitch’s covering theorem for the so-called γ-rectangles. We introduce a general maximal operator Msγδ, and with the help of generalized Φ-functions, the strong- and weak-type inequalities will be proved for this maximal operator. Namely, if the exponent function 1/p(·) is log-Hölder continuous and p- ≥ s, where 1 ≤ s ≤ ∞ is arbitrary (or p- ≥ s), then the maximal operator Msγδ is bounded on the space Lp(·)(Rd) (or the maximal operator is of weak-type (p(·), p(·))).
引用
收藏
页码:1079 / 1101
页数:22
相关论文
共 50 条
  • [1] Weak- and strong-type inequality for the cone-like maximal operator in variable Lebesgue spaces
    Szarvas, Kristof
    Weisz, Ferenc
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2016, 66 (04) : 1079 - 1101
  • [2] The Kakeya maximal operator on the variable Lebesgue spaces
    Saito, Hiroki
    Tanaka, Hitoshi
    ARCHIV DER MATHEMATIK, 2014, 103 (06) : 481 - 491
  • [3] The maximal operator on weighted variable Lebesgue spaces
    David Cruz-Uribe
    Lars Diening
    Peter Hästö
    Fractional Calculus and Applied Analysis, 2011, 14 : 361 - 374
  • [4] The Kakeya maximal operator on the variable Lebesgue spaces
    Hiroki Saito
    Hitoshi Tanaka
    Archiv der Mathematik, 2014, 103 : 481 - 491
  • [5] THE MAXIMAL OPERATOR ON WEIGHTED VARIABLE LEBESGUE SPACES
    Cruz-Uribe, David
    Diening, Lars
    Hasto, Peter
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2011, 14 (03) : 361 - 374
  • [6] Maximal operator on variable Lebesgue spaces with radial exponent
    Nekvinda, Ales
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 477 (02) : 961 - 986
  • [7] THE ε-MAXIMAL OPERATOR AND HAAR MULTIPLIERS ON VARIABLE LEBESGUE SPACES
    Cruz-Uribe, David
    Penrod, Michael
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2023, 26 (03): : 685 - 701
  • [8] Modular inequalities for the maximal operator in variable Lebesgue spaces
    Cruz-Uribe, David
    Di Fratta, Giovanni
    Fiorenza, Alberto
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 177 : 299 - 311
  • [9] Weighted norm inequalities for the maximal operator on variable Lebesgue spaces
    Cruz-Uribe, D.
    Fiorenza, A.
    Neugebauer, C. J.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 394 (02) : 744 - 760
  • [10] HARDY TYPE INEQUALITY IN VARIABLE LEBESGUE SPACES
    Rafeiro, Humberto
    Samko, Stefan
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2009, 34 (01) : 279 - 289