Invariants, cohomology, and automorphic forms of higher order

被引:0
|
作者
Anton Deitmar
机构
[1] Mathematisches Institut,
来源
Selecta Mathematica | 2012年 / 18卷
关键词
Higher order forms; Hecke operators; Arithmetic groups; Sheaf cohomology; Borel conjecture; 11F12; 11F25; 11F75; 18F20; 20C08; 32C35; 55N30;
D O I
暂无
中图分类号
学科分类号
摘要
A general structure theorem on higher order invariants is proven. For an arithmetic group, the structure of the corresponding Hecke module is determined. It is shown that the module does not contain any irreducible submodule. This explains the fact that L-functions of higher order forms have no Euler product. Higher order cohomology is introduced, classical results of Borel are generalized, and a higher order version of Borel’s conjecture is stated.
引用
收藏
页码:855 / 883
页数:28
相关论文
共 50 条