On iterative computation of fixed points and optimization

被引:0
|
作者
Ioannis K Argyros
Yeol Je Cho
Saïd Hilout
机构
[1] Cameron University,Department of Mathematics Sciences
[2] Gyeongsang National University,Department of Mathematics Education and RINS
[3] King Abdulaziz University,Department of Mathematics
[4] Poitiers University,Laboratoire de Mathématiques et Applications
关键词
fixed point; the Gauss-Newton method; majorizing sequences; convex composite optimization; semi-local convergence; 47H10; 47J05; 47J25; 65G99; 49M15; 41A29;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a semi-local convergence analysis of the Gauss-Newton method for convex composite optimization is presented using the concept of quasi-regularity in order to approximate fixed points in optimization. Our convergence analysis is presented first under the L-average Lipschitz and then under generalized convex majorant conditions. The results extend the applicability of the Gauss-Newton method under the same computational cost as in earlier studies such as Li and Ng (SIAM J. Optim. 18:613-642, 2007), Moldovan and Pellegrini (J. Optim. Theory Appl. 142:147-163, 2009), Moldovan and Pellegrini (J. Optim. Theory Appl. 142:165-183, 2009), Wang (Math. Comput. 68:169-186, 1999) and Wang (IMA J. Numer. Anal. 20:123-134, 2000).
引用
收藏
相关论文
共 50 条
  • [31] Computation of Leray-Schauder fixed points
    Fan, JH
    Li, PX
    CHINESE SCIENCE BULLETIN, 1999, 44 (08): : 685 - 688
  • [32] Distributed Computation of Fixed Points on Dependency Graphs
    Dalsgaard, Andreas Engelbredt
    Enevoldsen, Soren
    Larsen, Kim Guldstrand
    Srba, Jiri
    DEPENDABLE SOFTWARE ENGINEERING: THEORIES, TOOLS, AND APPLICATIONS, 2016, 9984 : 197 - 212
  • [33] FAST ALGORITHMS FOR THE COMPUTATION OF FIXED-POINTS
    SIKORSKI, K
    ROBUSTNESS IN IDENTIFICATION AND CONTROL, 1989, : 49 - 58
  • [34] Iterative methods for fixed points and zero points of nonlinear mappings with applications
    Liu, Liya
    Qin, Xiaolong
    Agarwal, Ravi P.
    OPTIMIZATION, 2021, 70 (04) : 693 - 713
  • [35] Iterative Schemes for Fixed Point Computation of Nonexpansive Mappings
    Chen, Rudong
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [36] On the stability of iterative approximations to fixed points of nonexpansive mappings
    Alber, Ya I.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 328 (02) : 958 - 971
  • [37] The iterative turbo decoding algorithm has fixed points
    Duan, L
    Rimoldi, B
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (07) : 2993 - 2995
  • [38] Behaviour of fixed and critical points of the -family of iterative methods
    Campos, B.
    Cordero, A.
    Torregrosa, J. R.
    Vindel, P.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2015, 53 (03) : 807 - 827
  • [39] Iterative Approximation of Common Fixed Points in Kasahara Spaces
    Filip, Alexandru-Darius
    Radu, Voichita Adriana
    MATHEMATICAL ANALYSIS I: APPROXIMATION THEORY, ICRAPAM 2018, 2020, 306 : 139 - 149
  • [40] An iterative method for mixed equilibrium problems and fixed points
    Jiang, Qiaohong
    INFORMATION TECHNOLOGY APPLICATIONS IN INDUSTRY, PTS 1-4, 2013, 263-266 : 283 - 286