On iterative computation of fixed points and optimization

被引:0
|
作者
Ioannis K Argyros
Yeol Je Cho
Saïd Hilout
机构
[1] Cameron University,Department of Mathematics Sciences
[2] Gyeongsang National University,Department of Mathematics Education and RINS
[3] King Abdulaziz University,Department of Mathematics
[4] Poitiers University,Laboratoire de Mathématiques et Applications
关键词
fixed point; the Gauss-Newton method; majorizing sequences; convex composite optimization; semi-local convergence; 47H10; 47J05; 47J25; 65G99; 49M15; 41A29;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a semi-local convergence analysis of the Gauss-Newton method for convex composite optimization is presented using the concept of quasi-regularity in order to approximate fixed points in optimization. Our convergence analysis is presented first under the L-average Lipschitz and then under generalized convex majorant conditions. The results extend the applicability of the Gauss-Newton method under the same computational cost as in earlier studies such as Li and Ng (SIAM J. Optim. 18:613-642, 2007), Moldovan and Pellegrini (J. Optim. Theory Appl. 142:147-163, 2009), Moldovan and Pellegrini (J. Optim. Theory Appl. 142:165-183, 2009), Wang (Math. Comput. 68:169-186, 1999) and Wang (IMA J. Numer. Anal. 20:123-134, 2000).
引用
收藏
相关论文
共 50 条