We consider strong solutions to the initial boundary value problems for the isentropic compressible Navier–Stokes equations in one dimension:
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\rho\left\{\begin{array}{lll} t+(\rho u)_x=0\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\, {\rm in}\,(0,T)\times(0,1)\\ (\rho u )_t+(\rho u^2)_x+\rho \Phi_x-(\mu( \rho )u_x)_x+P_x=0\quad\quad {\rm in}\,(0,T)\times(0,1) \\\left(\left(\frac{\delta(\Phi_x)^2\,+\,1}{(\Phi_x)^2\,+\,\delta}\right)^{\frac{2-p}{2}}\Phi_x\right)_x=4\pi g(\rho-\frac{1}{|\Omega|}\int\nolimits_\Omega \rho dx\,\,\,\, )\quad\,\, {\rm in}\,(0,T)\times(0,1)\end{array}\right.$$\end{document}Here, the Φ is a non-Newtonian potential and strong solutions of the problem and obtains the uniqueness under the compatibility condition.