Detecting obstructive sleep apnea by craniofacial image–based deep learning

被引:0
|
作者
Shuai He
Hang Su
Yanru Li
Wen Xu
Xingjun Wang
Demin Han
机构
[1] Beijing Tongren Hospital,Department of Otolaryngology Head and Neck Surgery
[2] Capital Medical University,Department of Otolaryngology Head and Neck Surgery
[3] Beijing Chaoyang Hospital,Obstructive Sleep Apnea
[4] Capital Medical University,Hypopnea Syndrome Clinical Diagnosis and Therapy and Research Centre
[5] Capital Medical University,Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education
[6] Capital Medical University,Department of Electronic Engineering
[7] Tsinghua Shenzhen International Graduate School,undefined
[8] Tsinghua University,undefined
来源
Sleep and Breathing | 2022年 / 26卷
关键词
Obstructive sleep apnea; Deep learning; Craniofacial photographs;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1885 / 1895
页数:10
相关论文
共 50 条
  • [21] The interaction of obesity and craniofacial deformity in obstructive sleep apnea
    Huang, Liping
    Gao, Xuemei
    DENTOMAXILLOFACIAL RADIOLOGY, 2021, 50 (04)
  • [22] Craniofacial features of female patients with obstructive sleep apnea
    Tsuiki, Satoru
    Fujimatsu, Shidzuka
    Munezawa, Takeshi
    Inoue, Yuichi
    JOURNAL OF PSYCHOSOMATIC OBSTETRICS AND GYNECOLOGY, 2007, 28 : 97 - 97
  • [23] CRANIOFACIAL CHARACTERISTICS OF SYNDROMIC PATIENTS WITH OBSTRUCTIVE SLEEP APNEA
    Alsaeed, S.
    Hamoda, M.
    Ayers, E.
    Lee, K.
    Almeida, F.
    SLEEP MEDICINE, 2019, 64 : S12 - S12
  • [24] AIOSA: An approach to the automatic identification of obstructive sleep apnea events based on deep learning
    Bernardini, Andrea
    Brunello, Andrea
    Gigli, Gian Luigi
    Montanari, Angelo
    Saccomanno, Nicola
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2021, 118
  • [25] Deep Learning Based Obstructive Sleep Apnea Detection for e-health Applications
    Jothi, E. Smily Jeya
    Anitha, J.
    Priyadharshini, Jemima
    Hemanth, D. Jude
    ELECTRONIC GOVERNANCE WITH EMERGING TECHNOLOGIES, EGETC 2022, 2022, 1666 : 1 - 11
  • [26] Accurate Deep Learning-Based Sleep Staging in a Clinical Population With Suspected Obstructive Sleep Apnea
    Korkalainen, Henri
    Aakko, Juhani
    Nikkonen, Sami
    Kainulainen, Samu
    Leino, Akseli
    Duce, Brett
    Afara, Isaac O.
    Myllymaa, Sami
    Toyras, Juha
    Leppanen, Timo
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (07) : 2073 - 2081
  • [27] Machine Learning Prediction of Obstructive Sleep Apnea Based on 3D Craniofacial Geometric Morphometric Scans
    Ben Messaoud, R.
    Monna, F.
    Navarro, N.
    Baillieul, S.
    Loiodice, C.
    Tamisier, R.
    Joyeux-Faure, M.
    Pepin, J.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2022, 205
  • [28] On the Use of Smartphones for Detecting Obstructive Sleep Apnea
    Al-Mardini, Mamoun
    Aloul, Fadi
    Sagahyroon, Assim
    Al-Husseini, Luai
    2013 IEEE 13TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE), 2013,
  • [29] Deep Learning of Facial Depth Maps for Obstructive Sleep Apnea Prediction
    Islam, Syed M. S.
    Mahmood, Hassan
    Al-Jumaily, Adel Ali
    Claxton, Scott
    2018 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND DATA ENGINEERING (ICMLDE 2018), 2018, : 154 - 157
  • [30] Craniofacial Profile Assessment in Patients with Obstructive Sleep Apnea COMMENTARY
    Hui, David S.
    SLEEP, 2009, 32 (01) : 11 - 12