On a Divisibility Property Involving the Sum of Element Orders

被引:0
|
作者
Mihai-Silviu Lazorec
机构
[1] “Al.I. Cuza” University,Faculty of Mathematics
关键词
Group element orders; Sum of element orders; ZM-groups; Primary 20D60; Secondary 20D15; 20D20;
D O I
暂无
中图分类号
学科分类号
摘要
A finite group G is called ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}-divisible if ψ(H)|ψ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (H)|\psi (G)$$\end{document} for any subgroup H of G, where ψ(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (H)$$\end{document} and ψ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (G)$$\end{document} are the sum of element orders of H and G, respectively. In this paper, we classify the finite groups whose subgroups are all ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}-divisible. Since the existence of ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}-divisible groups is related to the class of square-free order groups, we also study the sum of element orders and the ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}-divisibility property of ZM-groups. In the end, we introduce the concept of ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}-normal divisible group, i.e., a group for which the ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}-divisibility property is satisfied by all its normal subgroups. Using simple and quasisimple groups, we are able to construct infinitely many ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document}-normal divisible groups which are neither simple nor nilpotent.
引用
收藏
页码:941 / 951
页数:10
相关论文
共 50 条
  • [2] An answer to a conjecture on the sum of element orders
    Azad, Morteza Baniasad
    Khosravi, Behrooz
    Jafarpour, Morteza
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2022, 21 (04)
  • [3] Subgroups with a small sum of element orders
    Mihai-Silviu Lazorec
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117
  • [5] Sum of the Element Orders in Groups of the Square-Free Orders
    Seyyed Majid Jafarian Amiri
    Mohsen Amiri
    Bulletin of the Malaysian Mathematical Sciences Society, 2017, 40 : 1025 - 1034
  • [6] Sum of the Element Orders in Groups of the Square-Free Orders
    Amiri, Seyyed Majid Jafarian
    Amiri, Mohsen
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2017, 40 (03) : 1025 - 1034
  • [7] On the sum of the inverses of the element orders in finite groups
    Azad, Morteza Baniasad
    Khosravi, Behrooz
    Rashidi, Hamideh
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (02) : 694 - 698
  • [8] A result on the sum of element orders of a finite group
    Afsane Bahri
    Behrooz Khosravi
    Zeinab Akhlaghi
    Archiv der Mathematik, 2020, 114 : 3 - 12
  • [9] THE MINIMUM SUM OF ELEMENT ORDERS OF FINITE GROUPS
    Jahani, M.
    Marefat, Y.
    Refaghat, H.
    Fasaghandisi, B. Vakili
    INTERNATIONAL JOURNAL OF GROUP THEORY, 2021, 10 (02) : 55 - 60
  • [10] DIVISIBILITY ORDERS IN βN
    Sobot, Boris
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2020, 107 (121): : 37 - 44