Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt

被引:0
|
作者
P. Jeżowski
O. Crosnier
E. Deunf
P. Poizot
F. Béguin
T. Brousse
机构
[1] Poznan University of Technology,
[2] Institute of Chemistry and Technical Electrochemistry,undefined
[3] Institut des Matériaux Jean Rouxel,undefined
[4] CNRS UMR 6502—Université de Nantes,undefined
[5] Réseau sur le Stockage Électrochimique de l’Énergie,undefined
[6] Institut Universitaire de France (IUF),undefined
关键词
D O I
10.1038/nmat5029
中图分类号
学科分类号
摘要
Lithium-ion capacitors (LICs) shrewdly combine a lithium-ion battery negative electrode capable of reversibly intercalating lithium cations, namely graphite, together with an electrical double-layer positive electrode, namely activated carbon. However, the beauty of this concept is marred by the lack of a lithium-cation source in the device, thus requiring a specific preliminary charging step. The strategies devised thus far in an attempt to rectify this issue all present drawbacks. Our research uncovers a unique approach based on the use of a lithiated organic material, namely 3,4-dihydroxybenzonitrile dilithium salt. This compound can irreversibly provide lithium cations to the graphite electrode during an initial operando charging step without any negative effects with respect to further operation of the LIC. This method not only restores the low CO2 footprint of LICs, but also possesses far-reaching potential with respect to designing a wide range of greener hybrid devices based on other chemistries, comprising entirely recyclable components.
引用
收藏
页码:167 / 173
页数:6
相关论文
共 50 条
  • [21] High-efficiency sacrificial prelithiation of lithium-ion capacitors with superior energy-storage performance
    Sun, Congkai
    Zhang, Xiong
    Li, Chen
    Wang, Kai
    Sun, Xianzhong
    Ma, Yanwei
    ENERGY STORAGE MATERIALS, 2020, 24 (24) : 160 - 166
  • [22] Nonaqueous Hybrid Lithium-Ion and Sodium-Ion Capacitors
    Wang, Huanwen
    Zhu, Changrong
    Chao, Dongliang
    Yan, Qingyu
    Fan, Hong Jin
    ADVANCED MATERIALS, 2017, 29 (46)
  • [23] The Boundary of Lithium Plating in Graphite Electrode for Safe Lithium-Ion Batteries
    Cai, Wenlong
    Yan, Chong
    Yao, Yu-Xing
    Xu, Lei
    Chen, Xiao-Ru
    Huang, Jia-Qi
    Zhang, Qiang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (23) : 13007 - 13012
  • [24] Lithium-Ion Capacitors: A Review of Design and Active Materials
    Lamb, Jacob J.
    Burheim, Odne S.
    ENERGIES, 2021, 14 (04)
  • [25] Design Rationale and Device Configuration of Lithium-Ion Capacitors
    Liang, Jiaxing
    Wang, Da-Wei
    ADVANCED ENERGY MATERIALS, 2022, 12 (25)
  • [26] Study on Lifetime Decline Prediction of Lithium-Ion Capacitors
    Cui, Shuhui
    Riaz, Saleem
    Wang, Kai
    ENERGIES, 2023, 16 (22)
  • [27] Carbon-based materials for lithium-ion capacitors
    Wang, Xiaojun
    Liu, Lili
    Niu, Zhiqiang
    MATERIALS CHEMISTRY FRONTIERS, 2019, 3 (07) : 1265 - 1279
  • [28] An Overview on Design Parameters of Practical Lithium-Ion Capacitors
    Jin, Liming
    Yuan, Jianmin
    Shellikeri, Annadanesh
    Naderi, Roya
    Qin, Nan
    Lu, Yanyan
    Fan, Runlin
    Wu, Qiang
    Zheng, Junsheng
    Zhang, Cunman
    Zheng, Jim P.
    BATTERIES & SUPERCAPS, 2021, 4 (05) : 749 - 757
  • [29] Lithium-ion capacitors: Electrochemical performance and thermal behavior
    Smith, Patricia H.
    Tran, Thanh N.
    Jiang, Thomas L.
    Chung, Jaesik
    JOURNAL OF POWER SOURCES, 2013, 243 : 982 - 992
  • [30] Hybrid lithium-ion capacitors with asymmetric graphene electrodes
    Sun, Yige
    Tang, Jie
    Qin, Faxiang
    Yuan, Jinshi
    Zhang, Kun
    Li, Jing
    Zhu, Da-Ming
    Qin, Lu-Chang
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (26) : 13601 - 13609