Quantum Ergodicity for Point Scatterers on Arithmetic Tori

被引:0
|
作者
Pär Kurlberg
Henrik Ueberschär
机构
[1] KTH Royal Institute of Technology,Department of Mathematics
[2] Institut de Physique Théorique,undefined
[3] CEA Saclay,undefined
来源
关键词
Multiplicative Function; Full Density; Point Scatterer; Laplace Eigenvalue; Quantum Ergodicity;
D O I
暂无
中图分类号
学科分类号
摘要
We prove an analogue of Shnirelman, Zelditch and Colin de Verdiè- re’s quantum ergodicity Theorems in a case where there is no underlying classical ergodicity. The system we consider is the Laplacian with a delta potential on the square torus. There are two types of wave functions: old eigenfunctions of the Laplacian, which are not affected by the scatterer, and new eigenfunctions which have a logarithmic singularity at the position of the scatterer. We prove that a full density subsequence of the new eigenfunctions equidistribute in phase space. Our estimates are uniform with respect to the coupling parameter, in particular the equidistribution holds for both the weak and strong coupling quantizations of the point scatterer.
引用
收藏
页码:1565 / 1590
页数:25
相关论文
共 50 条
  • [21] Quantum Ergodicity for a Point Scatterer on the Three-Dimensional Torus
    Nadav Yesha
    Annales Henri Poincaré, 2015, 16 : 1 - 14
  • [22] Quantum Differentiability on Quantum Tori
    Edward Mcdonald
    Fedor Sukochev
    Xiao Xiong
    Communications in Mathematical Physics, 2019, 371 : 1231 - 1260
  • [23] Quantum Differentiability on Quantum Tori
    Mcdonald, Edward
    Sukochev, Fedor
    Xiong, Xiao
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 371 (03) : 1231 - 1260
  • [24] Weak quantum ergodicity
    Kaplan, L
    Heller, EJ
    PHYSICA D-NONLINEAR PHENOMENA, 1998, 121 (1-2) : 1 - 18
  • [25] REMARKS ON QUANTUM ERGODICITY
    Riviere, Gabriel
    JOURNAL OF MODERN DYNAMICS, 2013, 7 (01) : 119 - 133
  • [26] Arithmetic Structures on Noncommutative Tori with Real Multiplication
    Plazas, Jorge
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2008, 2008
  • [27] Quantum Ergodicity on Graphs
    Gnutzmann, S.
    Keating, J. P.
    Piotet, F.
    PHYSICAL REVIEW LETTERS, 2008, 101 (26)
  • [28] Around quantum ergodicity
    Dyatlov, Semyon
    ANNALES MATHEMATIQUES DU QUEBEC, 2022, 46 (01): : 11 - 26
  • [29] Around quantum ergodicity
    Semyon Dyatlov
    Annales mathématiques du Québec, 2022, 46 : 11 - 26
  • [30] Quantum unique ergodicity
    Donnelly, H
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (09) : 2945 - 2951