Quantum Ergodicity for Point Scatterers on Arithmetic Tori

被引:0
|
作者
Pär Kurlberg
Henrik Ueberschär
机构
[1] KTH Royal Institute of Technology,Department of Mathematics
[2] Institut de Physique Théorique,undefined
[3] CEA Saclay,undefined
来源
关键词
Multiplicative Function; Full Density; Point Scatterer; Laplace Eigenvalue; Quantum Ergodicity;
D O I
暂无
中图分类号
学科分类号
摘要
We prove an analogue of Shnirelman, Zelditch and Colin de Verdiè- re’s quantum ergodicity Theorems in a case where there is no underlying classical ergodicity. The system we consider is the Laplacian with a delta potential on the square torus. There are two types of wave functions: old eigenfunctions of the Laplacian, which are not affected by the scatterer, and new eigenfunctions which have a logarithmic singularity at the position of the scatterer. We prove that a full density subsequence of the new eigenfunctions equidistribute in phase space. Our estimates are uniform with respect to the coupling parameter, in particular the equidistribution holds for both the weak and strong coupling quantizations of the point scatterer.
引用
收藏
页码:1565 / 1590
页数:25
相关论文
共 50 条
  • [1] Quantum Ergodicity for Point Scatterers on Arithmetic Tori
    Kurlberg, Par
    Ueberschaer, Henrik
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2014, 24 (05) : 1565 - 1590
  • [2] Quantum chaos for point scatterers on flat tori
    Ueberschaer, Henrik
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 372 (2007):
  • [3] Superscars for Arithmetic Toral Point Scatterers
    Pär Kurlberg
    Lior Rosenzweig
    Communications in Mathematical Physics, 2017, 349 : 329 - 360
  • [4] Superscars for Arithmetic Toral Point Scatterers
    Kurlberg, Par
    Rosenzweig, Lior
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 349 (01) : 329 - 360
  • [5] New Variants of Arithmetic Quantum Ergodicity
    Humphries, Peter
    Thorner, Jesse
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2025, 406 (03)
  • [6] Invariant measures and arithmetic quantum unique ergodicity
    Lindenstrauss, Elon
    ANNALS OF MATHEMATICS, 2006, 163 (01) : 165 - 219
  • [7] Random Moments for the New Eigenfunctions of Point Scatterers on Rectangular Flat Tori
    Letendre, Thomas
    Ueberschar, Henrik
    ANNALES HENRI POINCARE, 2021, 22 (06): : 1783 - 1836
  • [8] Random Moments for the New Eigenfunctions of Point Scatterers on Rectangular Flat Tori
    Thomas Letendre
    Henrik Ueberschär
    Annales Henri Poincaré, 2021, 22 : 1783 - 1836
  • [9] Level Repulsion for Arithmetic Toral Point Scatterers in Dimension 3
    Kurlberg, Par
    ANNALES HENRI POINCARE, 2022, 23 (12): : 4449 - 4462
  • [10] Level Repulsion for Arithmetic Toral Point Scatterers in Dimension 3
    Pär Kurlberg
    Annales Henri Poincaré, 2022, 23 : 4449 - 4462