Structure of a CLC chloride ion channel by cryo-electron microscopy

被引:0
|
作者
Eunyong Park
Ernest B. Campbell
Roderick MacKinnon
机构
[1] Laboratory of Molecular Neurobiology and Biophysics and Howard Hughes Medical Institute,
[2] The Rockefeller University,undefined
来源
Nature | 2017年 / 541卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
CLC proteins transport chloride (Cl−) ions across cellular membranes to regulate muscle excitability, electrolyte movement across epithelia, and acidification of intracellular organelles. Some CLC proteins are channels that conduct Cl− ions passively, whereas others are secondary active transporters that exchange two Cl− ions for one H+. The structural basis underlying these distinctive transport mechanisms is puzzling because CLC channels and transporters are expected to share the same architecture on the basis of sequence homology. Here we determined the structure of a bovine CLC channel (CLC-K) using cryo-electron microscopy. A conserved loop in the Cl− transport pathway shows a structure markedly different from that of CLC transporters. Consequently, the cytosolic constriction for Cl− passage is widened in CLC-K such that the kinetic barrier previously postulated for Cl−/H+ transporter function would be reduced. Thus, reduction of a kinetic barrier in CLC channels enables fast flow of Cl− down its electrochemical gradient.
引用
收藏
页码:500 / 505
页数:5
相关论文
共 50 条
  • [21] The cryo-electron microscopy structure of human transcription factor IIH
    Basil J. Greber
    Thi Hoang Duong Nguyen
    Jie Fang
    Pavel V. Afonine
    Paul D. Adams
    Eva Nogales
    Nature, 2017, 549 : 414 - 417
  • [22] Single Particle Cryo-Electron Microscopy: From Sample to Structure
    White, Joshua B. R.
    Maskell, Daniel P.
    Howe, Andrew
    Harrow, Martin
    Clare, Daniel K.
    Siebert, C. Alistair
    Hesketh, Emma L.
    Thompson, Rebecca F.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2021, (171):
  • [23] Structure of the filamentous phage pIV multimer by cryo-electron microscopy
    Opalka, N
    Beckmann, R
    Boisset, N
    Simon, MN
    Russel, M
    Darst, SA
    JOURNAL OF MOLECULAR BIOLOGY, 2003, 325 (03) : 461 - 470
  • [24] Cryo-electron microscopy structure of an archaeal ribonuclease P holoenzyme
    Futang Wan
    Qianmin Wang
    Jing Tan
    Ming Tan
    Juan Chen
    Shaohua Shi
    Pengfei Lan
    Jian Wu
    Ming Lei
    Nature Communications, 10
  • [25] CRYO-ELECTRON MICROSCOPY SHAPES UP
    Baker, Monya
    NATURE, 2018, 561 (7724) : 565 - 567
  • [26] Biological cryo-electron microscopy in China
    Wang, Hong-Wei
    Lei, Jianlin
    Shi, Yigong
    PROTEIN SCIENCE, 2017, 26 (01) : 16 - 31
  • [27] Cryo-electron microscopy structure of the lysosomal calcium-permeable channel TRPML3
    Hirschi, Marscha
    Herzik, Mark A., Jr.
    Wie, Jinhong
    Suo, Yang
    Borschel, William F.
    Ren, Dejian
    Lander, Gabriel C.
    Lee, Seok-Yong
    NATURE, 2017, 550 (7676) : 411 - 414
  • [28] Cryo-electron microscopy of membrane proteins
    Thonghin, Nopnithi
    Kargas, Vasileios
    Clews, Jack
    Ford, Robert C.
    METHODS, 2018, 147 : 176 - 186
  • [29] Cryo-electron microscopy of vitreous sections
    Al-Amoudi, A
    Chang, JJ
    Leforestier, A
    McDowall, A
    Salamin, LM
    Norlén, LPO
    Richter, K
    Blanc, NS
    Studer, D
    Dubochet, J
    EMBO JOURNAL, 2004, 23 (18): : 3583 - 3588
  • [30] CAPSID STRUCTURE OF A GEMINIVIRUS, AS DETERMINED BY CRYO-ELECTRON MICROSCOPY.
    Faulkner, Lee
    Zhang, Wei
    Olson, Norm
    Baker, Timothy S.
    Boulton, Margaret
    Davies, Jeffrey
    Agbandje-McKenna, Mavis
    McKenna, Robert
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 1999, 55 : 549 - 549