Structure of a CLC chloride ion channel by cryo-electron microscopy

被引:0
|
作者
Eunyong Park
Ernest B. Campbell
Roderick MacKinnon
机构
[1] Laboratory of Molecular Neurobiology and Biophysics and Howard Hughes Medical Institute,
[2] The Rockefeller University,undefined
来源
Nature | 2017年 / 541卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
CLC proteins transport chloride (Cl−) ions across cellular membranes to regulate muscle excitability, electrolyte movement across epithelia, and acidification of intracellular organelles. Some CLC proteins are channels that conduct Cl− ions passively, whereas others are secondary active transporters that exchange two Cl− ions for one H+. The structural basis underlying these distinctive transport mechanisms is puzzling because CLC channels and transporters are expected to share the same architecture on the basis of sequence homology. Here we determined the structure of a bovine CLC channel (CLC-K) using cryo-electron microscopy. A conserved loop in the Cl− transport pathway shows a structure markedly different from that of CLC transporters. Consequently, the cytosolic constriction for Cl− passage is widened in CLC-K such that the kinetic barrier previously postulated for Cl−/H+ transporter function would be reduced. Thus, reduction of a kinetic barrier in CLC channels enables fast flow of Cl− down its electrochemical gradient.
引用
收藏
页码:500 / 505
页数:5
相关论文
共 50 条
  • [1] Structure of a CLC chloride ion channel by cryo-electron microscopy
    Park, Eunyong
    Ampbell, Ernest B. C.
    MacKinnon, Roderick
    NATURE, 2017, 541 (7638) : 500 - 505
  • [2] Cryo-electron microscopy structure of the TRPV2 ion channel
    Lejla Zubcevic
    Mark A Herzik
    Ben C Chung
    Zhirui Liu
    Gabriel C Lander
    Seok-Yong Lee
    Nature Structural & Molecular Biology, 2016, 23 : 180 - 186
  • [3] Cryo-electron microscopy structure of the TRPV2 ion channel
    Zubcevic, Lejla
    Herzik, Mark A., Jr.
    Chung, Ben C.
    Liu, Zhirui
    Lander, Gabriel C.
    Lee, Seok-Yong
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2016, 23 (02) : 180 - +
  • [4] Cryo-electron microscopy structure ofCLHM1ion channel fromCaenorhabditis elegans
    Yang, Weixin
    Wang, Youwang
    Guo, Jianli
    He, Lingli
    Zhou, Ye
    Zheng, Hui
    Liu, Zhenfeng
    Zhu, Ping
    Zhang, Xuejun C.
    PROTEIN SCIENCE, 2020, 29 (08) : 1803 - 1815
  • [5] Structure of the human epithelial sodium channel by cryo-electron microscopy
    Noreng, Sigrid
    Bharadwaj, Arpita
    Posert, Richard
    Yoshioka, Craig
    Baconguis, Isabelle
    ELIFE, 2018, 7
  • [6] The cryo-electron microscopy structure of huntingtin
    Qiang Guo
    Jingdong Bin Huang
    Manuel Cheng
    Tatjana Seefelder
    Günter Engler
    Patrick Pfeifer
    Markus Oeckl
    Franziska Otto
    Melanie Moser
    Alexander Maurer
    Wolfgang Pautsch
    Rubén Baumeister
    Stefan Fernández-Busnadiego
    Nature, 2018, 555 : 117 - 120
  • [7] The cryo-electron microscopy structure of huntingtin
    Guo, Qiang
    Huang, Bin
    Cheng, Jingdong
    Seefelder, Manuel
    Engler, Tatjana
    Pfeifer, Guenter
    Oeckl, Patrick
    Otto, Markus
    Moser, Franziska
    Maurer, Melanie
    Pautsch, Alexander
    Baumeister, Wolfgang
    Fernandez-Busnadiego, Ruben
    Kochanek, Stefan
    NATURE, 2018, 555 (7694) : 117 - +
  • [8] THE CRYO-ELECTRON MICROSCOPY STRUCTURE OF HUNTINGTIN
    Kochanek, Stefan
    Huang, Bin
    Seefelder, Manuel
    Engler, Tatjana
    Cheng, Jingdong
    Baumeister, Wolfgang
    Guo, Qiang
    Fernandezt-Busnadiego, Ruben
    JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2018, 89 : A5 - A5
  • [9] Cryo-electron microscopy and cryo-electron tomography of nanoparticles
    Stewart, Phoebe L.
    WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY, 2017, 9 (02)
  • [10] Macromolecular structure determination by cryo-electron microscopy
    Saibil, HR
    ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2000, 56 : 1215 - 1222