Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations

被引:0
|
作者
Bhanushee Sharma
Vijil Chenthamarakshan
Amit Dhurandhar
Shiranee Pereira
James A. Hendler
Jonathan S. Dordick
Payel Das
机构
[1] RPI,Chemical and Biological Engineering
[2] IBM Research,Computer Science
[3] ICARE,undefined
[4] International Center for Alternatives in Research and Education,undefined
[5] RPI,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Explainable machine learning for molecular toxicity prediction is a promising approach for efficient drug development and chemical safety. A predictive ML model of toxicity can reduce experimental cost and time while mitigating ethical concerns by significantly reducing animal and clinical testing. Herein, we use a deep learning framework for simultaneously modeling in vitro, in vivo, and clinical toxicity data. Two different molecular input representations are used; Morgan fingerprints and pre-trained SMILES embeddings. A multi-task deep learning model accurately predicts toxicity for all endpoints, including clinical, as indicated by the area under the Receiver Operator Characteristic curve and balanced accuracy. In particular, pre-trained molecular SMILES embeddings as input to the multi-task model improved clinical toxicity predictions compared to existing models in MoleculeNet benchmark. Additionally, our multitask approach is comprehensive in the sense that it is comparable to state-of-the-art approaches for specific endpoints in in vitro, in vivo and clinical platforms. Through both the multi-task model and transfer learning, we were able to indicate the minimal need of in vivo data for clinical toxicity predictions. To provide confidence and explain the model’s predictions, we adapt a post-hoc contrastive explanation method that returns pertinent positive and negative features, which correspond well to known mutagenic and reactive toxicophores, such as unsubstituted bonded heteroatoms, aromatic amines, and Michael receptors. Furthermore, toxicophore recovery by pertinent feature analysis captures more of the in vitro (53%) and in vivo (56%), rather than of the clinical (8%), endpoints, and indeed uncovers a preference in known toxicophore data towards in vitro and in vivo experimental data. To our knowledge, this is the first contrastive explanation, using both present and absent substructures, for predictions of clinical and in vivo molecular toxicity.
引用
收藏
相关论文
共 50 条
  • [31] Multi-Task Deep Neural Networks for Natural Language Understanding
    Liu, Xiaodong
    He, Pengcheng
    Chen, Weizhu
    Gao, Jianfeng
    57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 4487 - 4496
  • [32] Creating CREATE queries with multi-task deep neural networks
    Diker, S. Nazmi
    Sakar, C. Okan
    KNOWLEDGE-BASED SYSTEMS, 2023, 266
  • [33] Automatic Facial Attractiveness Prediction by Deep Multi-Task Learning
    Gao, Lian
    Li, Weixin
    Huang, Zehua
    Huang, Di
    Wang, Yunhong
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 3592 - 3597
  • [34] Deep Multi-Task Learning for Joint Localization, Perception, and Prediction
    Phillips, John
    Martinez, Julieta
    Barsan, Ioan Andrei
    Casas, Sergio
    Sadat, Abbas
    Urtasun, Raquel
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 4677 - 4687
  • [35] Multi-task deep convolutional neural network for cancer diagnosis
    Liao, Qing
    Ding, Ye
    Jiang, Zoe L.
    Wang, Xuan
    Zhang, Chunkai
    Zhang, Qian
    NEUROCOMPUTING, 2019, 348 : 66 - 73
  • [36] Evolving Deep Parallel Neural Networks for Multi-Task Learning
    Wu, Jie
    Sun, Yanan
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2021, PT II, 2022, 13156 : 517 - 531
  • [37] Atrial Fibrillation Burden Estimation Using Multi-Task Deep Convolutional Neural Network
    Prabhakararao, Eedara
    Dandapat, Samarendra
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (12) : 5992 - 6002
  • [38] Joint Vestibular Schwannoma Enlargement Prediction and Segmentation Using a Deep Multi-task Model
    Wang, Kai
    George-Jones, Nicholas A.
    Chen, Liyuan
    Hunter, Jacob B.
    Wang, Jing
    LARYNGOSCOPE, 2023, 133 (10): : 2754 - 2760
  • [39] Multi-Task Residential Short-Term Load Prediction Based on Contrastive Learning
    Zhang, Wuqing
    Li, Jianbin
    Wu, Sixing
    Guo, Yiguo
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2024, 19 (05) : 682 - 689
  • [40] Multiple MACE Risk Prediction using Multi-Task Recurrent Neural Network with Attention
    Xu, Enliang
    Zhao, Shiwan
    Mei, Jing
    Xia, Eryu
    Yu, Yiqin
    Huang, Songfang
    2019 IEEE INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI), 2019, : 468 - 469