Counting decomposable multivariate polynomials

被引:0
|
作者
Joachim von zur Gathen
机构
[1] B-IT,
[2] Universität Bonn,undefined
关键词
Computer algebra; Polynomial decomposition; Multivariate polynomials; Finite fields; Combinatorics on polynomials;
D O I
暂无
中图分类号
学科分类号
摘要
A polynomial f (multivariate over a field) is decomposable if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f=g \circ h}$$\end{document} with g univariate of degree at least 2. We determine the dimension (over an algebraically closed field) of the set of decomposables, and an approximation to their number over a finite field. The relative error in our approximations is exponentially decaying in the input size.
引用
收藏
页码:165 / 185
页数:20
相关论文
共 50 条
  • [21] MULTIVARIATE APPROACH FOR BRAIN DECOMPOSABLE CONNECTIVITY NETWORKS
    Chatelain, F.
    Achard, S.
    Michel, O.
    Gouy-Pailler, C.
    2011 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2011, : 817 - 820
  • [22] Decomposable polynomials in second order linear recurrence sequences
    Clemens Fuchs
    Christina Karolus
    Dijana Kreso
    manuscripta mathematica, 2019, 159 : 321 - 346
  • [23] FACTORING OF MULTIVARIATE POLYNOMIALS
    VIRY, G
    RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 1980, 14 (02): : 209 - 223
  • [24] MULTIVARIATE ORTHOGONAL POLYNOMIALS
    KRAMER, KH
    ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (01): : 309 - &
  • [25] Pseudozeros of multivariate polynomials
    Hoffman, JW
    Madden, JJ
    Zhang, H
    MATHEMATICS OF COMPUTATION, 2003, 72 (242) : 975 - 1002
  • [26] ON MULTIVARIATE ORTHOGONAL POLYNOMIALS
    XU, Y
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1993, 24 (03) : 783 - 794
  • [27] Similarity transformations of decomposable matrix polynomials and related questions
    B. Z. Shavarovskii
    Computational Mathematics and Mathematical Physics, 2009, 49 : 1469 - 1482
  • [28] Multivariate Chebyshev polynomials
    Lyakhovsky, V. D.
    Uvarov, Ph V.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (12)
  • [29] Pseudofactors of multivariate polynomials
    Huang, Yuzhen
    Wu, Wenda
    Sletter, Hans J.
    Zhi, Lihong
    Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC, 2000, : 161 - 168
  • [30] On Multivariate Bernstein Polynomials
    Foupouagnigni, Mama
    Mouafo Wouodjie, Merlin
    MATHEMATICS, 2020, 8 (09)