Counting decomposable multivariate polynomials

被引:0
|
作者
Joachim von zur Gathen
机构
[1] B-IT,
[2] Universität Bonn,undefined
关键词
Computer algebra; Polynomial decomposition; Multivariate polynomials; Finite fields; Combinatorics on polynomials;
D O I
暂无
中图分类号
学科分类号
摘要
A polynomial f (multivariate over a field) is decomposable if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f=g \circ h}$$\end{document} with g univariate of degree at least 2. We determine the dimension (over an algebraically closed field) of the set of decomposables, and an approximation to their number over a finite field. The relative error in our approximations is exponentially decaying in the input size.
引用
收藏
页码:165 / 185
页数:20
相关论文
共 50 条
  • [1] Counting decomposable multivariate polynomials
    von zur Gathen, Joachim
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2011, 22 (03) : 165 - 185
  • [2] Counting Decomposable Univariate Polynomials
    Von Zur Gathen, Joachim
    COMBINATORICS PROBABILITY & COMPUTING, 2015, 24 (01): : 294 - 328
  • [3] Counting decomposable polynomials with integer coefficients
    Dubickas, Arturas
    Sha, Min
    MONATSHEFTE FUR MATHEMATIK, 2023, 200 (02): : 229 - 253
  • [4] Counting decomposable polynomials with integer coefficients
    Artūras Dubickas
    Min Sha
    Monatshefte für Mathematik, 2023, 200 : 229 - 253
  • [5] Algorithms for Modular Counting of Roots of Multivariate Polynomials
    Parikshit Gopalan
    Venkatesan Guruswami
    Richard J. Lipton
    Algorithmica, 2008, 50 : 479 - 496
  • [6] Algorithms for modular counting of roots of multivariate polynomials
    Copalan, P
    Guruswami, V
    Lipton, RJ
    LATIN 2006: THEORETICAL INFORMATICS, 2006, 3887 : 544 - 555
  • [7] Algorithms for modular counting of roots of multivariate polynomials
    Gopalan, Parikshit
    Guruswami, Venkatesan
    Lipton, Richard J.
    ALGORITHMICA, 2008, 50 (04) : 479 - 496
  • [8] DECOMPOSABLE MATRIX POLYNOMIALS
    FORSTER, KH
    NAGY, B
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 187 : 41 - 58
  • [9] ON DECOMPOSABLE AND COMMUTING POLYNOMIALS
    LIDL, R
    LECTURE NOTES IN COMPUTER SCIENCE, 1985, 204 : 148 - 149
  • [10] Interpolation by decomposable univariate polynomials
    von zur Gathen, Joachim
    Matera, Guillermo
    JOURNAL OF COMPLEXITY, 2024, 85