Hierarchical fusion of visual and physiological signals for emotion recognition

被引:0
|
作者
Yuchun Fang
Ruru Rong
Jun Huang
机构
[1] Shanghai University,School of Computer Engineering and Science
[2] Chinese Academy of Science,Shanghai Advanced Research Institute
关键词
Emotion recognition; Facial expression; Electroencephalogram;
D O I
暂无
中图分类号
学科分类号
摘要
Emotion recognition is an attractive and essential topic in image and signal processing. In this paper, we propose a multi-level fusion method to combine visual information and physiological signals for emotion recognition. For visual information, we propose a serial fusion of two-stage features to enhance the representation of facial expression in a video sequence. We propose to integrate the Neural Aggregation Network with Convolutional Neural Network feature map to reinforce the vital emotional frames. For physiological signals, we propose a parallel fusion scheme to widen the band of the annotation of the electroencephalogram signals. We extract the frequency feature with the Linear-Frequency Cepstral Coefficients and enhance it with the signal complexity denoted by Sample Entropy (SampEn). In the classification stage, we realize both feature level and decision level fusion of both visual and physiological information. Experimental results validate the effectiveness of the proposed multi-level multi-modal feature representation method.
引用
下载
收藏
页码:1103 / 1121
页数:18
相关论文
共 50 条
  • [21] Emotion Induction and Emotion Recognition using Their Physiological Signals Three Emotions and Recognition
    Park, Byoung-Jun
    Jang, Eun-Hye
    Kim, Sang-Hyeob
    Chung, Myoung-Ae
    2012 7TH INTERNATIONAL CONFERENCE ON COMPUTING AND CONVERGENCE TECHNOLOGY (ICCCT2012), 2012, : 1252 - 1255
  • [22] Fusion with Hierarchical Graphs for Multimodal Emotion Recognition
    Tang, Shuyun
    Luo, Zhaojie
    Nan, Guoshun
    Baba, Jun
    Yoshikawa, Yuichiro
    Ishiguro, Hiroshi
    PROCEEDINGS OF 2022 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2022, : 1288 - 1296
  • [23] Emotion Recognition From Multimodal Physiological Signals Using a Regularized Deep Fusion of Kernel Machine
    Zhang, Xiaowei
    Liu, Jinyong
    Shen, Jian
    Li, Shaojie
    Hou, Kechen
    Hu, Bin
    Gao, Jin
    Zhang, Tong
    IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (09) : 4386 - 4399
  • [24] Graph Theoretical Analysis of EEG Functional Connectivity Patterns and Fusion with Physiological Signals for Emotion Recognition
    Xefteris, Vasileios-Rafail
    Tsanousa, Athina
    Georgakopoulou, Nefeli
    Diplaris, Sotiris
    Vrochidis, Stefanos
    Kompatsiaris, Ioannis
    SENSORS, 2022, 22 (21)
  • [25] MF-Net: a multimodal fusion network for emotion recognition based on multiple physiological signals
    Lei Zhu
    Yu Ding
    Aiai Huang
    Xufei Tan
    Jianhai Zhang
    Signal, Image and Video Processing, 2025, 19 (1)
  • [26] Reliable emotion recognition system based on dynamic adaptive fusion of forehead biopotentials and physiological signals
    Khezri, Mandi
    Firoozabadi, Mohammad
    Sharafat, Ahmad Reza
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2015, 122 (02) : 149 - 164
  • [27] Emotion Recognition from Physiological Signals Based on ASAGA
    Zhou, Lianzhe
    Pang, Huanli
    Liu, Hanmei
    PROCEEDINGS OF THE 2012 INTERNATIONAL CONFERENCE ON COMMUNICATION, ELECTRONICS AND AUTOMATION ENGINEERING, 2013, 181 : 735 - 740
  • [28] Emotion Recognition in Conversations Using Brain and Physiological Signals
    Saffaryazdi, Nastaran
    Goonesekera, Yenushka
    Saffaryazdi, Nafiseh
    Hailemariam, Nebiyou Daniel
    Temesgen, Ebasa Girma
    Nanayakkara, Suranga
    Broadbent, Elizabeth
    Billinghurst, Mark
    IUI'22: 27TH INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, 2022, : 229 - 242
  • [29] Group Synchrony for Emotion Recognition Using Physiological Signals
    Bota, Patricia
    Zhang, Tianyi
    El Ali, Abdallah
    Fred, Ana
    da Silva, Hugo Placido
    Cesar, Pablo
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2023, 14 (04) : 2614 - 2625
  • [30] Emotion Recognition from Physiological Signals Using AdaBoost
    Cheng, Bo
    APPLIED INFORMATICS AND COMMUNICATION, PT I, 2011, 224 : 412 - 417