On the asymptotics of multidimensional linear wave packets: Reference solutions

被引:0
|
作者
V. G. Gnevyshev
S. I. Badulin
机构
[1] Russian Academy of Sciences,Shirshov Institute of Oceanology
[2] Novosibirsk State University,undefined
来源
Moscow University Physics Bulletin | 2017年 / 72卷
关键词
linear waves; wave dispersion; method of stationary phase; method of steepest descent; saddlepoint method; wave packet dispersion;
D O I
暂无
中图分类号
学科分类号
摘要
The classic problem of linear wave-packet propagation in a dispersive medium is considered. Asymptotic equations of the Cauchy problem for two-dimensional Gaussian wave packets are constructed in terms of Fourier integrals. These asymptotic solutions are regular at the caustics and describe new physical features of wave-packet propagation: rotation in space and formation of a wave front with anomalously slow dispersion (quasi-dispersive).
引用
收藏
页码:415 / 423
页数:8
相关论文
共 50 条
  • [21] Asymptotics of solutions of non-linear dissipative equations
    Kaikina, EI
    Naumkin, PI
    Shishmarev, IA
    IZVESTIYA MATHEMATICS, 2004, 68 (03) : 461 - 492
  • [22] Asymptotics of Solutions to Linear Differential Equations of Odd Order
    Mirzoev, K. A.
    Konechnaya, N. N.
    MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2020, 75 (01) : 22 - 26
  • [23] THE SHOCK FRONT ASYMPTOTICS IN THE LINEAR PROBLEM OF SHOCK WAVE
    Semenko, Evgeny Veniaminovich
    Semenko, Tatiana Ivanovna
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2018, 15 : 950 - 970
  • [24] On the Asymptotics of Solutions of Some Classes of Linear Differential Equations
    Konechnaya, N. N.
    Mirzoev, K. A.
    Sultanaev, Ya T.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2020, 10 (01): : 162 - 171
  • [25] Asymptotics of Solutions to Linear Differential Equations of Odd Order
    K. A. Mirzoev
    N. N. Konechnaya
    Moscow University Mathematics Bulletin, 2020, 75 : 22 - 26
  • [26] ASYMPTOTICS OF THE SOLUTIONS TO THE NON-LINEAR HILBERT PROBLEM
    EFENDIEV, MA
    DOKLADY AKADEMII NAUK SSSR, 1983, 270 (01): : 58 - 61
  • [27] Uniform asymptotics for the linear Kelvin wave in spherical geometry
    Boyd, John P.
    Zhou, Cheng
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 2008, 65 (02) : 655 - 660
  • [28] Asymptotics of solutions to wave equation in domain with a small hole
    Korikov, Dmitrii V.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON 2014 DAYS ON DIFFRACTION (DD), 2014, : 138 - 143
  • [29] ASYMPTOTICS OF SOLUTIONS FOR THE NON-LINEAR HILBERT PROBLEM
    EPHENDIEV, MA
    IZVESTIYA AKADEMII NAUK AZERBAIDZHANSKOI SSR SERIYA FIZIKO-TEKHNICHESKIKH I MATEMATICHESKIKH NAUK, 1982, (04): : 24 - 28
  • [30] Uniform asymptotics of solutions of the wave operator with meromorphic coefficients
    Korovina, Maria V.
    Matevossian, Hovik A.
    Smirnov, Ilya N.
    APPLICABLE ANALYSIS, 2023, 102 (01) : 239 - 252