Analytical study of solitons to nonlinear time fractional parabolic equations

被引:0
|
作者
M. Mirzazadeh
机构
[1] University of Guilan,Department of Engineering Sciences, Faculty of Technology and Engineering, East of Guilan
来源
Nonlinear Dynamics | 2016年 / 85卷
关键词
First integral method; Division theorem; Solitons; Nonlinear time fractional parabolic equations; 35Q53; 65M70; 35Q80; 35Q55; 35G25;
D O I
暂无
中图分类号
学科分类号
摘要
The some of the well-known nonlinear time fractional parabolic partial differential equations is studied in this paper. The fractional complex transform and the first integral method are employed to construct one-soliton solutions of these equations. The power of this manageable method is confirmed. The obtained solutions include solitary wave solutions, periodic wave solutions and combined formal solutions.
引用
收藏
页码:2569 / 2576
页数:7
相关论文
共 50 条
  • [21] Solitons and periodic solutions to a couple of fractional nonlinear evolution equations
    Mirzazadeh, M.
    Eslami, M.
    Biswas, Anjan
    PRAMANA-JOURNAL OF PHYSICS, 2014, 82 (03): : 465 - 476
  • [22] Two-grid finite element methods for nonlinear time-fractional parabolic equations
    Jie Zhou
    Xing Yao
    Wansheng Wang
    Numerical Algorithms, 2022, 90 : 709 - 730
  • [23] Two-grid finite element methods for nonlinear time-fractional parabolic equations
    Zhou, Jie
    Yao, Xing
    Wang, Wansheng
    NUMERICAL ALGORITHMS, 2022, 90 (02) : 709 - 730
  • [24] Analytical study of solitons for the variant Boussinesq equations
    Hui Gao
    Tianzhou Xu
    Shaojie Yang
    Gangwei Wang
    Nonlinear Dynamics, 2017, 88 : 1139 - 1146
  • [25] Analytical study of solitons for the variant Boussinesq equations
    Gao, Hui
    Xu, Tianzhou
    Yang, Shaojie
    Wang, Gangwei
    NONLINEAR DYNAMICS, 2017, 88 (02) : 1139 - 1146
  • [26] Variational formulation of time-fractional parabolic equations
    Karkulik, Michael
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (11) : 3929 - 3938
  • [27] Time fractional parabolic equations with partially SMO coefficients
    Dong, Hongjie
    Kim, Doyoon
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 377 : 759 - 808
  • [28] Qualitative properties of solutions for dual fractional nonlinear parabolic equations
    Chen, Wenxiong
    Ma, Lingwei
    JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 285 (10)
  • [29] An efficient method for the analytical study of linear and nonlinear time-fractional partial differential equations with variable coefficients
    Liaqat, M. I.
    Akgul, A.
    Prosviryakov, E. Yu.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2023, 27 (02): : 214 - 240
  • [30] Approximate Analytical Solution of Two Coupled Time Fractional Nonlinear Schrödinger Equations
    Bakkyaraj T.
    Sahadevan R.
    International Journal of Applied and Computational Mathematics, 2016, 2 (1) : 113 - 135