Ternary Numbers, Algebras of Reflexive Numbers and Berger Graphs

被引:0
|
作者
Alexey Dubrovski
Guennadi Volkov
机构
来源
关键词
Division Algebra; Lorentz Group; Kepler Problem; Alternative Algebra; Ternary Algebra;
D O I
暂无
中图分类号
学科分类号
摘要
The Calabi-Yau spaces with SU(n) holonomy can be studied by the algebraic way through the integer lattice where one can construct the Newton reflexive polyhedra or the Berger graphs. Our conjecture is that the Berger graphs can be directly related with the n-ary algebras. To find such algebras we study the n-ary generalization of the well-known binary norm division algebras, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\mathbb{R}}, {\mathbb{C}}, {\mathbb{H}}, {\mathbb{O}}$$ \end{document}, which helped to discover the most important “minimal” binary simple Lie groups, U(1), SU(2) and G(2). As the most important example, we consider the case n = 3, which gives the ternary generalization of quaternions (octonions), 3n, n = 2, 3, respectively. The ternary generalization of quaternions is directly related to the new ternary algebra (group) which are related to the natural extensions of the binary su(3) algebra (SU(3) group). Using this ternary algebra we found the solution for the Berger graph: a tetrahedron. “Why geniosis live so short? They wanna stay kids.”
引用
收藏
页码:159 / 181
页数:22
相关论文
共 50 条
  • [11] The bondage numbers of graphs with small crossing numbers
    Huang, Jia
    Xu, Jun-Ming
    DISCRETE MATHEMATICS, 2007, 307 (15) : 1881 - 1897
  • [12] Obstacle Numbers of Graphs
    Hannah Alpert
    Christina Koch
    Joshua D. Laison
    Discrete & Computational Geometry, 2010, 44 : 223 - 244
  • [13] Obstacle Numbers of Graphs
    Alpert, Hannah
    Koch, Christina
    Laison, Joshua D.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2010, 44 (01) : 223 - 244
  • [14] FIBONACCI NUMBERS OF GRAPHS
    PRODINGER, H
    TICHY, RF
    FIBONACCI QUARTERLY, 1982, 20 (01): : 16 - 21
  • [15] Ranking numbers of graphs
    Chang, Chan-Wei
    Kuo, David
    Lin, Hsing-Ching
    INFORMATION PROCESSING LETTERS, 2010, 110 (16) : 711 - 716
  • [16] The Hamiltonian Numbers in Graphs
    Chang, Ting-Pang
    Tong, Li-Da
    ARS COMBINATORIA, 2015, 123 : 151 - 158
  • [17] On Locating Numbers of Graphs
    Baogen Xu
    Chunhua Li
    Zhizhu Fan
    Journal of Harbin Institute of Technology(New series), 2018, 25 (01) : 93 - 96
  • [18] ISOPERIMETRIC NUMBERS OF GRAPHS
    MOHAR, B
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1989, 47 (03) : 274 - 291
  • [19] On the packing numbers in graphs
    Mojdeh, Doost Ali
    Samadi, Babak
    Khodkar, Abdollah
    Golmohammadi, Hamid Reza
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2018, 71 : 468 - 475
  • [20] NUMBERS OF CUBIC GRAPHS
    ROBINSON, RW
    WORMALD, NC
    JOURNAL OF GRAPH THEORY, 1983, 7 (04) : 463 - 467