Ternary Numbers, Algebras of Reflexive Numbers and Berger Graphs

被引:0
|
作者
Alexey Dubrovski
Guennadi Volkov
机构
来源
关键词
Division Algebra; Lorentz Group; Kepler Problem; Alternative Algebra; Ternary Algebra;
D O I
暂无
中图分类号
学科分类号
摘要
The Calabi-Yau spaces with SU(n) holonomy can be studied by the algebraic way through the integer lattice where one can construct the Newton reflexive polyhedra or the Berger graphs. Our conjecture is that the Berger graphs can be directly related with the n-ary algebras. To find such algebras we study the n-ary generalization of the well-known binary norm division algebras, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\mathbb{R}}, {\mathbb{C}}, {\mathbb{H}}, {\mathbb{O}}$$ \end{document}, which helped to discover the most important “minimal” binary simple Lie groups, U(1), SU(2) and G(2). As the most important example, we consider the case n = 3, which gives the ternary generalization of quaternions (octonions), 3n, n = 2, 3, respectively. The ternary generalization of quaternions is directly related to the new ternary algebra (group) which are related to the natural extensions of the binary su(3) algebra (SU(3) group). Using this ternary algebra we found the solution for the Berger graph: a tetrahedron. “Why geniosis live so short? They wanna stay kids.”
引用
收藏
页码:159 / 181
页数:22
相关论文
共 50 条
  • [1] Ternary numbers, algebras of reflexive numbers and Berger graphs
    Dubrovski, Alexey
    Volkov, Guennadi
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2007, 17 (02) : 159 - 181
  • [2] Reflexive numbers and Berger graphs from Calabi-Yau spaces
    Lipatov, LN
    Vera, AS
    Velizhanin, VN
    Volkov, GG
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2006, 21 (13-14): : 2953 - 3005
  • [3] Reflexive Line Graphs of Trees and Salem Numbers
    Milica Anđelić
    Slobodan K. Simić
    Dejan Živković
    Mediterranean Journal of Mathematics, 2019, 16
  • [4] Reflexive Line Graphs of Trees and Salem Numbers
    Andelic, Milica
    Simic, Slobodan K.
    Zivkovic, Dejan
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2019, 16 (05)
  • [5] The competition numbers of ternary Hamming graphs
    Park, Boram
    Sano, Yoshio
    APPLIED MATHEMATICS LETTERS, 2011, 24 (09) : 1608 - 1613
  • [6] Algebras, synchronous games, and chromatic numbers of graphs
    Helton, J. William
    Meyer, Kyle P.
    Paulsen, Vern, I
    Satriano, Matthew
    NEW YORK JOURNAL OF MATHEMATICS, 2019, 25 : 328 - 361
  • [7] Betti numbers of toric algebras of certain bipartite graphs
    Nandi, Rimpa
    Nanduri, Ramakrishna
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (12)
  • [8] The clique numbers of regular graphs of matrix algebras are finite
    Akbari, S.
    Jamaali, M.
    Fakhari, S. A. Seyed
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (10) : 1715 - 1718
  • [9] Fibonacci numbers and Lucas numbers in graphs
    Startek, Mariusz
    Wloch, Andrzej
    Wloch, Iwona
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (04) : 864 - 868
  • [10] Fibonacci numbers and Lucas numbers in graphs
    Technical University of Rzeszów, Faculty of Mathematics and Applied Physics, ul.W.Pola 2, 35-959 Rzeszów, Poland
    Discrete Appl Math, 1600, 4 (864-868):