On the Distance to the Closest Matrix with Triple Zero Eigenvalue

被引:0
|
作者
Kh. D. Ikramov
A. M. Nazari
机构
[1] M. V. Lomonosov Moscow State University,
来源
Mathematical Notes | 2003年 / 73卷
关键词
2-norm distance; square complex matrix; singular value; multiple zero eigenvalue;
D O I
暂无
中图分类号
学科分类号
摘要
The 2-norm distance from a matrix A to the set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\mathcal{M}}$$ \end{document} of n × n matrices with a zero eigenvalue of multiplicity ≥3 is estimated. If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$Q(\gamma _1 ,\gamma _2 ,\gamma _3 ) = \left( {\begin{array}{*{20}c} A & {\gamma _1 I_n } & {\gamma _3 I_n } \\ 0 & A & {\gamma _2 I_n } \\ 0 & 0 & A \\ \end{array} } \right), n \geqslant 3,$$ \end{document} then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\rho _2 (A,{\mathcal{M}}) \geqslant {\mathop {max}\limits_{\gamma _1 ,\gamma _2 \geqslant 0,\gamma _3 \in {\mathbb{C}}}} \sigma _{3n - 2} (Q(\gamma _1 ,\gamma _2 ,\gamma _3 )),$$ \end{document} where σi(·)is the ith singular value of the corresponding matrix in the decreasing order of singular values. Moreover, if the maximum on the right-hand side is attained at the point \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\gamma ^ * = (\gamma _1^ * ,\gamma _2^ * ,\gamma _3^ * )$$ \end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\gamma _1^ * \gamma _2^ * \ne 0$$ \end{document}, then, in fact, one has the exact equality \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\rho _2 (A,{\mathcal{M}}) = \sigma _{3n - 2} (Q(\gamma _1^ * ,\gamma _2^ * ,\gamma _3^ * )).$$ \end{document} This result can be regarded as an extension of Malyshev's formula, which gives the 2-norm distance from A to the set of matrices with a multiple zero eigenvalue.
引用
收藏
页码:511 / 520
页数:9
相关论文
共 50 条
  • [31] BIFURCATIONS ASSOCIATED WITH A TRIPLE-ZERO EIGENVALUE OF INDEX-2 OR INDEX-3
    PEI, Y
    HUSEYIN, K
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1988, 68 (04): : T142 - T145
  • [32] Opinion Consensus with Delay When the Zero Eigenvalue of the Connection Matrix is Semi-simple
    Yicheng Liu
    Jianhong Wu
    Journal of Dynamics and Differential Equations, 2017, 29 : 1539 - 1551
  • [33] Opinion Consensus with Delay When the Zero Eigenvalue of the Connection Matrix is Semi-simple
    Liu, Yicheng
    Wu, Jianhong
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2017, 29 (04) : 1539 - 1551
  • [34] Computing the Closest Approach Distance of Two Ellipsoids
    Choi, Min Gyu
    SYMMETRY-BASEL, 2020, 12 (08):
  • [35] Mahalanobis distance based iterative closest point
    Hansena, Mads Fogtmann
    Blas, Morten Rufus
    Larsen, Rasmus
    MEDICAL IMAGING 2007: IMAGE PROCESSING, PTS 1-3, 2007, 6512
  • [36] MEAN DISTANCE OF CLOSEST APPROACH IN THEORY OF LIQUIDS
    DELRIO, F
    DELONNGI, DA
    PHYSICS LETTERS A, 1976, 56 (06) : 463 - 464
  • [37] CLOSEST DISTANCE BETWEEN ITERATES OF TYPICAL POINTS
    Zhao, Boyuan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2024, 44 (08) : 2252 - 2279
  • [38] Finding the closest normal structured matrix
    Kovac, Erna Begovic
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 617 : 49 - 77
  • [39] Face Alignment by Minimizing the Closest Classification Distance
    Ekenel, Hazim Kemal
    Stiefelhagen, Rainer
    2009 IEEE 3RD INTERNATIONAL CONFERENCE ON BIOMETRICS: THEORY, APPLICATIONS AND SYSTEMS, 2009, : 92 - 97
  • [40] COMPUTING CLOSEST STABLE NONNEGATIVE MATRIX
    Nesterov, Yu
    Protasov, V. Yu
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2020, 41 (01) : 1 - 28