Toward remote sensing with broadband terahertz waves

被引:8
|
作者
Clough B. [1 ]
Zhang X.-C. [2 ,3 ]
机构
[1] Rensselaer Polytechnic Institute, Troy, NY
[2] The Institute of Optics, University of Rochester, Rochester, NY
[3] Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan
基金
美国国家科学基金会;
关键词
acoustic; air; fluorescence; plasma; terahertz;
D O I
10.1007/s12200-014-0397-3
中图分类号
学科分类号
摘要
This paper studies laser air-photonics used for remote sensing of short pulses of electromagnetic radiation at terahertz frequency. Through the laser ionization process, the air is capable of generating terahertz field strengths greater than 1 MV/cm, useful bandwidths over 100 terahertz, and highly directional emission patterns. Following ionization and plasma formation, the emitted plasma acoustic or fluorescence can be modulated by an external terahertz field to serve as omnidirectional, broadband, electromagnetic sensor. These results help to close the "terahertz gap" once existing between electronic and optical frequencies, and the acoustic and fluorescence detection methodologies developed provide promising new avenues for extending the useful range of terahertz wave technology. Our experimental results indicate that by hearing the sound or seeing the fluorescence, coherent detection of broadband terahertz wave at remote distance is feasible. © 2014 Higher Education Press and Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:199 / 219
页数:20
相关论文
共 50 条
  • [21] Broadband Photon-Assisted Terahertz Communication and Sensing
    Yu, Jianjun
    Wang, Yanyi
    Ding, Junjie
    Zhang, Jiao
    Li, Weiping
    Wang, Feng
    Wang, Chen
    Wang, Kaihui
    Tan, Yuxuan
    Zhu, Min
    Cai, Yuancheng
    Hua, Bingchang
    Lei, Mingzheng
    Xie, Tangyao
    Yu, Jianguo
    Zhao, Feng
    Zhou, Wen
    You, Xiaohu
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2023, 41 (11) : 3332 - 3349
  • [22] Broadband longwave radio remote sensing instrumentation
    Cohen, Morris B.
    Said, Ryan K.
    Paschal, Evans W.
    McCormick, Jackson C.
    Gross, Nicholas C.
    Thompson, Lee
    Higginson-Rollins, Marc
    Inan, Umran S.
    Chang, Jeffrey
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2018, 89 (09):
  • [23] Spectroscopy and sensing of fluid using terahertz waves
    Hattori, Toshiaki
    Aoki, Katsuyoshi
    You, Borwen
    Lu, Ja-Yu
    Yu, Chin-Ping
    INFRARED, MILLIMETER-WAVE, AND TERAHERTZ TECHNOLOGIES V, 2018, 10826
  • [24] Toward Standoff Distance Terahertz Wave Sensing
    Dai, Jianming
    Karpowicz, Nicholas
    Song, Qian
    Zhang, Cunlin
    Zhang, X. -C.
    2008 33RD INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER AND TERAHERTZ WAVES, VOLS 1 AND 2, 2008, : 251 - +
  • [25] Infrared remote sensing of breaking waves
    A. T. Jessup
    C. J. Zappa
    M. R. Loewen
    V. Hesany
    Nature, 1997, 385 : 52 - 55
  • [26] Polarimetric Remote Sensing of Ocean Waves
    Baxter, B.
    Hooper, B. A.
    Williams, J. Z.
    Dugan, J. P.
    OCEANS 2009, VOLS 1-3, 2009, : 1437 - +
  • [27] Infrared remote sensing of breaking waves
    Jessup, AT
    Zappa, CJ
    Loewen, MR
    Hesany, V
    NATURE, 1997, 385 (6611) : 52 - 55
  • [28] Airborne remote sensing of breaking waves
    Hwang, PA
    Wright, W
    Krabill, WB
    Swift, RN
    REMOTE SENSING OF ENVIRONMENT, 2002, 80 (01) : 65 - 75
  • [29] REMOTE-SENSING OF WAVES SUCCESSFUL
    LYDECKER, R
    SEA TECHNOLOGY, 1981, 22 (02) : 29 - 30
  • [30] Generation and manipulation of chiral broadband terahertz waves from cascade spintronic terahertz emitters
    Chen, Xinhou
    Wu, Xiaojun
    Shan, Shengyu
    Guo, Fengwei
    Kong, Deyin
    Wang, Chun
    Nie, Tianxiao
    Pandey, Chandan
    Wen, Lianggong
    Zhao, Weisheng
    Ruan, Cunjun
    Miao, Jungang
    Li, Yutong
    Wang, Li
    APPLIED PHYSICS LETTERS, 2019, 115 (22)