4D Variational Data Analysis with Imperfect Model

被引:0
|
作者
P.A. Vidard
E. Blayo
F.-X. Le Dimet
A. Piacentini
机构
[1] Université Joseph Fourier,Laboratoire de Modélisation et Calcul
[2] Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique,undefined
来源
关键词
adjoint methods; data assimilation; optimal control; model errors; order reduction; Kalman filtering;
D O I
暂无
中图分类号
学科分类号
摘要
One of the main hypothese made in variational data assimilation is to consider that the model is a strong constraint of the minimization, i.e. that the model describes exactly the behavior of the system. Obviously the hypothesis is never respected. We propose here an alternative to the 4D-Var that takes into account model errors by adding a nonphysical term into the model equation and controlling this term. A practical application is proposed on a simple case and a reduction of the size of control using preferred directions is introduced to make the method affordable for realistic applications.
引用
收藏
页码:489 / 504
页数:15
相关论文
共 50 条
  • [21] 4D-variational data assimilation with an adjoint air quality model for emission analysis
    Elbern, H
    Schmidt, H
    Talagrand, O
    Ebel, A
    ENVIRONMENTAL MODELLING & SOFTWARE, 2000, 15 (6-7) : 539 - 548
  • [22] Challenges and guidelines toward 4D nucleome data and model standards
    Marti-Renom, Marc A.
    Almouzni, Genevieve
    Bickmore, Wendy A.
    Bystricky, Kerstin
    Cavalli, Giacomo
    Fraser, Peter
    Gasser, Susan M.
    Giorgetti, Luca
    Heard, Edith
    Nicodemi, Mario
    Nollmann, Marcelo
    Orozco, Modesto
    Pombo, Ana
    Torres-Padilla, Maria-Elena
    NATURE GENETICS, 2018, 50 (10) : 1352 - 1358
  • [23] Challenges and guidelines toward 4D nucleome data and model standards
    Marc A. Marti-Renom
    Genevieve Almouzni
    Wendy A. Bickmore
    Kerstin Bystricky
    Giacomo Cavalli
    Peter Fraser
    Susan M. Gasser
    Luca Giorgetti
    Edith Heard
    Mario Nicodemi
    Marcelo Nollmann
    Modesto Orozco
    Ana Pombo
    Maria-Elena Torres-Padilla
    Nature Genetics, 2018, 50 : 1352 - 1358
  • [24] 4D Inversion of the Resistivity Monitoring Data with Focusing Model Constraint
    Cho, In-Ky
    Jeong, Da-Bhin
    GEOPHYSICS AND GEOPHYSICAL EXPLORATION, 2018, 21 (03): : 139 - 149
  • [25] Wound healing in a model system: analysis of 4D dynamics
    Ferris, D. R.
    Tanner, K.
    Lanzano, I.
    Gardiner, D. M.
    Rugg, E. L.
    Gratton, E.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2008, 128 : S100 - S100
  • [26] Acquisition of 4D tomographic Data
    Sonke, JJ
    Zijp, L
    van Herk, M
    MEDICAL PHYSICS, 2004, 31 (06) : 1800 - 1800
  • [27] The Variational Structure of Disparity and Regularization of 4D Light Fields
    Goldluecke, Bastian
    Wanner, Sven
    2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 1003 - 1010
  • [28] Canonical variational completion and 4D Gauss–Bonnet gravity
    Manuel Hohmann
    Christian Pfeifer
    Nicoleta Voicu
    The European Physical Journal Plus, 136
  • [29] 4D Radiomics: Impact of 4D Image Quality On Radiomic Analysis
    Zhang, Z.
    Huang, M.
    Jiang, Z.
    Chang, Y.
    Torok, J.
    Yin, F.
    Ren, L.
    MEDICAL PHYSICS, 2020, 47 (06) : E312 - E313
  • [30] 4D, or not 4D: that is the question
    Campbell, S
    ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2002, 19 (01) : 1 - 4