Stability criterion to explicit finite difference applied to the Bresse system

被引:4
|
作者
Almeida Júnior D.S. [1 ]
Muñoz Rivera J.E. [2 ]
机构
[1] Department of Mathematics, Federal University of Pará, Augusto Corrêa Street, 01, Belém, 66075-110, Pará
[2] National Laboratory for Scientific Computation, Getúlio Vargas Street, Number 333, Petrópolis, 25651-075, RJ
关键词
Energy method; Finite difference; Locking number; Stability criterion;
D O I
10.1007/s13370-014-0244-0
中图分类号
学科分类号
摘要
In this work, we show that the stability criterion of the explicit time integration method applied to the Bresse system is given by $$\begin{aligned} \Delta t\le \displaystyle \frac{2\epsilon }{\sqrt{ \bigg (12 +\displaystyle \frac{\epsilon ^2}{R^2}\bigg )}\displaystyle \frac{k G}{\rho }}, \end{aligned}$$Δt≤2ϵ(12+ϵ2 R2)kGρ,where the thickness $$\epsilon $$ϵ constitutes a limitation to compute the numerical solutions. This restriction to the stability criterion is not standard (is not CFL condition) and if $$\epsilon <<1$$ϵ<<1 it is very restrictive to numerical computations. To overcome this restriction, we use the technics performed by Wright [Commun Appl Numer Methods 3:181–185 (1987), Commun Numer Methods Eng 14:81–86 (1998)] to minimize the influence of $$\epsilon $$ϵ on stability criterion such that the CFL condition prevails. © 2014, African Mathematical Union and Springer-Verlag Berlin Heidelberg.
引用
下载
收藏
页码:761 / 778
页数:17
相关论文
共 50 条
  • [41] A new explicit stability criterion for human periodic breathing
    Vielle, B
    JOURNAL OF MATHEMATICAL BIOLOGY, 2000, 41 (06) : 546 - 558
  • [42] Uniform and weak stability of Bresse system with two infinite memories
    Aissa Guesmia
    Mokhtar Kirane
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [43] STABILITY CRITERION FOR DIFFERENCE EQUATIONS INVOLVING GENERALIZED DIFFERENCE OPERATOR
    Gevgesoglu, Murat
    Bolat, Yasar
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2018, 67 (01): : 266 - 279
  • [44] Stability and optimality of decay rate for a weakly dissipative Bresse system
    Alves, M. O.
    Fatori, L. H.
    Jorge Silva, M. A.
    Monteiro, R. N.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (05) : 898 - 908
  • [45] Uniform and weak stability of Bresse system with two infinite memories
    Guesmia, Aissa
    Kirane, Mokhtar
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (05):
  • [46] STABILITY INVESTIGATION FOR A CERTAIN EXPLICIT DIFFERENCE SCHEME
    BLOKHIN, AM
    ALAEV, RD
    SIBERIAN MATHEMATICAL JOURNAL, 1990, 31 (01) : 26 - 30
  • [47] A stability analysis for a generalized finite-difference scheme applied to the pure advection equation
    Tinoco-Guerrero, G.
    Dominguez-Mota, F. J.
    Gaona-Arias, A.
    Ruiz-Zavala, M. L.
    Tinoco-Ruiz, J. G.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2018, 147 : 293 - 300
  • [48] Exponential stability for a thermoelastic Bresse system: Theoretical and numerical study
    Bouraoui, Hamed Abderrahmane
    Djebabla, Abdelhak
    El Arwadi, Toufic
    Haiour, Mohamed
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (05) : 6002 - 6024
  • [49] A nonlinear thermoelastic Bresse system: Global existence and exponential stability
    Fatori, Luci Harue
    de Lima, Pedro Roberto
    Fernandez Sare, Hugo D.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 443 (02) : 1071 - 1089
  • [50] AN EXPLICIT FINITE-DIFFERENCE METHOD FOR FINITE-TIME OBSERVERS
    JAMES, MR
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 1994, 4 (06) : 791 - 806