Closed geodesics on pairs of pants

被引:0
|
作者
Claire M. Baribaud
机构
[1] Ecole Polytechnique Fédérale de Lausanne,Département de Mathématiques
[2] ETH-Zentrum,Department of Mathematics
来源
关键词
Riemann Surface; Hyperbolic Plane; Closed Geodesic; Compact Riemann Surface; Good Succession;
D O I
暂无
中图分类号
学科分类号
摘要
We study the non-simple closed geodesics of the Riemann surfaces of signature (0, 3). In the aim of classifying them, we define one parameter: the number of strings. We show that for a given number of strings, a minimal geodesic exists; we then give its representation and its length which depends on the boundary geodesics.
引用
收藏
页码:339 / 347
页数:8
相关论文
共 50 条
  • [31] Closed geodesics on Finsler spheres
    Wei Wang
    Calculus of Variations and Partial Differential Equations, 2012, 45 : 253 - 272
  • [32] Closed geodesics with Lipschitz obstacle
    Degiovanni, M
    Morbini, L
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 233 (02) : 767 - 789
  • [33] Closed geodesics in compact nilmanifolds
    Lisa DeMeyer
    manuscripta mathematica, 2001, 105 : 283 - 310
  • [34] Closed geodesics on orbifolds of revolution
    Borzellino, Joseph E.
    Jordan-Squire, Christopher R.
    Petrics, Gregory C.
    Sullivan, D. Mark
    HOUSTON JOURNAL OF MATHEMATICS, 2007, 33 (04): : 1011 - 1025
  • [35] Closed geodesics and bounded gaps
    Deitmar, Anton
    MATHEMATISCHE ZEITSCHRIFT, 2017, 287 (1-2) : 547 - 554
  • [36] NUMBER OF INVARIANT CLOSED GEODESICS
    GROVE, K
    TANAKA, M
    ACTA MATHEMATICA, 1978, 140 (1-2) : 33 - 48
  • [37] Closed geodesics in compact nilmanifolds
    DeMeyer, L
    MANUSCRIPTA MATHEMATICA, 2001, 105 (03) : 283 - 310
  • [38] CLOSED GEODESICS IN LORENTZIAN SURFACES
    Suhr, Stefan
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (03) : 1469 - 1486
  • [39] Closed geodesics and bounded gaps
    Anton Deitmar
    Mathematische Zeitschrift, 2017, 287 : 547 - 554
  • [40] The Type Numbers of Closed Geodesics
    Taimanov, I. A.
    REGULAR & CHAOTIC DYNAMICS, 2010, 15 (01): : 84 - 100