We study the non-simple closed geodesics of the Riemann surfaces of signature (0, 3). In the aim of classifying them, we define one parameter: the number of strings. We show that for a given number of strings, a minimal geodesic exists; we then give its representation and its length which depends on the boundary geodesics.
机构:Peking University,Beijing International Center for Mathematical Research, Key Laboratory of Pure and Applied Mathematics, School of Mathematical Science
Wei Wang
Calculus of Variations and Partial Differential Equations,
2012,
45
: 253
-
272
机构:
Calif Polytech State Univ San Luis Obispo, Dept Math, San Luis Obispo, CA 93407 USACalif Polytech State Univ San Luis Obispo, Dept Math, San Luis Obispo, CA 93407 USA
Borzellino, Joseph E.
Jordan-Squire, Christopher R.
论文数: 0引用数: 0
h-index: 0
机构:
Swarthmore Coll, Dept Math & Stat, Swarthmore, PA 19081 USACalif Polytech State Univ San Luis Obispo, Dept Math, San Luis Obispo, CA 93407 USA
Jordan-Squire, Christopher R.
Petrics, Gregory C.
论文数: 0引用数: 0
h-index: 0
机构:
Dartmouth Coll, Dept Math, Hanover, NH 03755 USACalif Polytech State Univ San Luis Obispo, Dept Math, San Luis Obispo, CA 93407 USA
Petrics, Gregory C.
Sullivan, D. Mark
论文数: 0引用数: 0
h-index: 0
机构:
Univ Washington, Dept Math, Seattle, WA 98195 USACalif Polytech State Univ San Luis Obispo, Dept Math, San Luis Obispo, CA 93407 USA