diffcyt: Differential discovery in high-dimensional cytometry via high-resolution clustering

被引:0
|
作者
Lukas M. Weber
Malgorzata Nowicka
Charlotte Soneson
Mark D. Robinson
机构
[1] University of Zurich,Institute of Molecular Life Sciences
[2] University of Zurich,SIB Swiss Institute of Bioinformatics
[3] F. Hoffmann-La Roche AG,undefined
[4] Friedrich Miescher Institute for Biomedical Research and SIB Swiss Institute of Bioinformatics,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
High-dimensional flow and mass cytometry allow cell types and states to be characterized in great detail by measuring expression levels of more than 40 targeted protein markers per cell at the single-cell level. However, data analysis can be difficult, due to the large size and dimensionality of datasets as well as limitations of existing computational methods. Here, we present diffcyt, a new computational framework for differential discovery analyses in high-dimensional cytometry data, based on a combination of high-resolution clustering and empirical Bayes moderated tests adapted from transcriptomics. Our approach provides improved statistical performance, including for rare cell populations, along with flexible experimental designs and fast runtimes in an open-source framework.
引用
收藏
相关论文
共 50 条
  • [41] An updated guide for the perplexed: cytometry in the high-dimensional era
    Thomas Liechti
    Lukas M. Weber
    Thomas M. Ashhurst
    Natalie Stanley
    Martin Prlic
    Sofie Van Gassen
    Florian Mair
    Nature Immunology, 2021, 22 : 1190 - 1197
  • [42] Algorithmic Tools for Mining High-Dimensional Cytometry Data
    Chester, Cariad
    Maecker, Holden T.
    JOURNAL OF IMMUNOLOGY, 2015, 195 (03): : 773 - 779
  • [43] Understanding the acceleration phenomenon via high-resolution differential equations
    Bin Shi
    Simon S. Du
    Michael I. Jordan
    Weijie J. Su
    Mathematical Programming, 2022, 195 : 79 - 148
  • [44] Analyzing high-dimensional cytometry data using FlowSOM
    Katrien Quintelier
    Artuur Couckuyt
    Annelies Emmaneel
    Joachim Aerts
    Yvan Saeys
    Sofie Van Gassen
    Nature Protocols, 2021, 16 : 3775 - 3801
  • [45] An effective clustering scheme for high-dimensional data
    He, Xuansen
    He, Fan
    Fan, Yueping
    Jiang, Lingmin
    Liu, Runzong
    Maalla, Allam
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (15) : 45001 - 45045
  • [46] Approximated clustering of distributed high-dimensional data
    Kriegel, HP
    Kunath, P
    Pfeifle, M
    Renz, M
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2005, 3518 : 432 - 441
  • [47] An updated guide for the perplexed: cytometry in the high-dimensional era
    Liechti, Thomas
    Weber, Lukas M.
    Ashhurst, Thomas M.
    Stanley, Natalie
    Prlic, Martin
    Van Gassen, Sofie
    Mair, Florian
    NATURE IMMUNOLOGY, 2021, 22 (10) : 1190 - 1197
  • [48] Unveiling the power of high-dimensional cytometry data with cyCONDOR
    Kroeger, Charlotte
    Mueller, Sophie
    Leidner, Jacqueline
    Kroeber, Theresa
    Warnat-Herresthal, Stefanie
    Spintge, Jannis B.
    Zajac, Timo
    Frolov, Aleksej
    Carraro, Caterina
    Puccio, Simone
    Schultze, Joachim L.
    Pacht, Tal
    Beyer, Marc
    Bonaguro, Lorenzo
    EUROPEAN JOURNAL OF IMMUNOLOGY, 2024, 54 : 185 - 185
  • [49] Clustering High-Dimensional Noisy Categorical Data
    Tian, Zhiyi
    Xu, Jiaming
    Tang, Jen
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (548) : 3008 - 3019
  • [50] Clustering and visualization of a high-dimensional diabetes dataset
    Lasek, Piotr
    Mei, Zhen
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS (KES 2019), 2019, 159 : 2179 - 2188