On solutions to the wave equation on a non-globally hyperbolic manifold

被引:0
|
作者
I. V. Volovich
O. V. Groshev
N. A. Gusev
E. A. Kuryanovich
机构
[1] Russian Academy of Sciences,Steklov Mathematical Institute
[2] Moscow State University,undefined
[3] Moscow Institute of Physics and Technology,undefined
关键词
Wave Equation; Cauchy Problem; STEKLOV Institute; Classical Solution; Hyperbolic Manifold;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Cauchy problem for the wave equation on a non-globally hyperbolic manifold of special form (the Minkowski plane with a handle) containing closed time-like curves. We prove that the classical solution of the Cauchy problem exists and is unique for initial data satisfying a specific set of additional requirements.
引用
收藏
页码:262 / 275
页数:13
相关论文
共 50 条
  • [41] CAUCHY PROBLEM FOR THE WAVE EQUATION ON NON-GLOBAL HYPERBOLIC MANIFOLDS
    Groshev, O. V.
    VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2011, (01): : 42 - 46
  • [43] Analytical approximations to the l-wave solutions of the Schrodinger equation with a hyperbolic potential
    Dong, Shishan
    Miranda, S. G.
    Enriquez, F. M.
    Dong, Shi-Hai
    MODERN PHYSICS LETTERS B, 2008, 22 (07): : 483 - 489
  • [45] Analysing multi-level Monte Carlo for options with non-globally Lipschitz payoff
    Michael B. Giles
    Desmond J. Higham
    Xuerong Mao
    Finance and Stochastics, 2009, 13 : 403 - 413
  • [46] Analysing multi-level Monte Carlo for options with non-globally Lipschitz payoff
    Giles, Michael B.
    Higham, Desmond J.
    Mao, Xuerong
    FINANCE AND STOCHASTICS, 2009, 13 (03) : 403 - 413
  • [47] Observer Design for Non-Globally Lipschitz Nonlinear Systems Using Hilbert Projection Theorem
    Zemouche, Ali
    Rajamani, Rajesh
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 2581 - 2586
  • [48] CONTINGENT SOLUTIONS TO THE CENTER MANIFOLD EQUATION
    AUBIN, JP
    DAPRATO, G
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1992, 9 (01): : 13 - 28
  • [49] CONTINGENT SOLUTIONS TO THE CENTER MANIFOLD EQUATION
    AUBIN, JP
    DAPRATO, G
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1990, 311 (06): : 295 - 300
  • [50] Split-step balanced θ-method for SDEs with non-globally Lipschitz continuous coefficients
    Liu, Yufen
    Cao, Wanrong
    Li, Yuelin
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 413