Towards apparent convergence in asymptotically safe quantum gravity

被引:0
|
作者
T. Denz
J. M. Pawlowski
M. Reichert
机构
[1] Universität Heidelberg,Institut für Theoretische Physik
[2] GSI Helmholtzzentrum für Schwerionenforschung mbH,ExtreMe Matter Institute EMMI
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The asymptotic safety scenario in gravity is accessed within the systematic vertex expansion scheme for functional renormalisation group flows put forward in Christiansen et al. (Phys Lett B 728:114, 2014), Christiansen et al. (Phy Rev D 93:044036, 2016), and implemented in Christiansen et al. (Phys Rev D 92:121501, 2015) for propagators and three-point functions. In the present work this expansion scheme is extended to the dynamical graviton four-point function. For the first time, this provides us with a closed flow equation for the graviton propagator: all vertices and propagators involved are computed from their own flows. In terms of a covariant operator expansion the current approximation gives access to Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document}, R, R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^2$$\end{document} as well as Rμν2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{\mu \nu }^2$$\end{document} and higher derivative operators. We find a UV fixed point with three attractive and two repulsive directions, thus confirming previous studies on the relevance of the first three operators. In the infrared we find trajectories that correspond to classical general relativity and further show non-classical behaviour in some fluctuation couplings. We also find signatures for the apparent convergence of the systematic vertex expansion. This opens a promising path towards establishing asymptotically safe gravity in terms of apparent convergence.
引用
收藏
相关论文
共 50 条
  • [41] Nonlocal Effects in Asymptotically Safe Gravity
    Nagy, Sandor
    [J]. SYMMETRY-BASEL, 2024, 16 (08):
  • [42] Critical Reflections on Asymptotically Safe Gravity
    Bonanno, Alfio
    Eichhorn, Astrid
    Gies, Holger
    Pawlowski, Jan M.
    Percacci, Roberto
    Reuter, Martin
    Saueressig, Frank
    Vacca, Gian Paolo
    [J]. FRONTIERS IN PHYSICS, 2020, 8
  • [43] Propagating gravitons vs. 'dark matter' in asymptotically safe quantum gravity
    Becker, Daniel
    Reuter, Martin
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2014, (12):
  • [44] The derivative expansion in asymptotically safe quantum gravity: general setup and quartic order
    Knorr, Benjamin
    [J]. SCIPOST PHYSICS CORE, 2021, 4 (03):
  • [45] Ruling out models of vector dark matter in asymptotically safe quantum gravity
    de Brito, Gustavo P.
    Eichhorn, Astrid
    Frandsen, Mads T.
    Rosenlyst, Martin
    Thing, Mattias E.
    Vieira, Arthur F.
    [J]. PHYSICAL REVIEW D, 2024, 109 (05)
  • [46] Propagating gravitons vs. ‘dark matter’ in asymptotically safe quantum gravity
    Daniel Becker
    Martin Reuter
    [J]. Journal of High Energy Physics, 2014
  • [47] The Asymptotically Safe Standard Model: From quantum gravity to dynamical chiral symmetry breaking
    Pastor-Gutierrez, Alvaro
    Pawlowski, Jan M.
    Reichert, Manuel
    [J]. SCIPOST PHYSICS, 2023, 15 (03):
  • [48] Foliated asymptotically safe gravity in the fluctuation approach
    Saueressig F.
    Wang J.
    [J]. Journal of High Energy Physics, 2023 (9)
  • [49] Fractal spacetime structure in asymptotically safe gravity
    Lauscher, O
    Reuter, M
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2005, (10): : 1275 - 1290
  • [50] On the number of relevant operators in asymptotically safe gravity
    Benedetti, D.
    [J]. EPL, 2013, 102 (02)