Monte Carlo Tree Search as an intelligent search tool in structural design problems

被引:0
|
作者
Leonardo Rossi
Mark H. M. Winands
Christoph Butenweg
机构
[1] Università degli Studi di Perugia,Department of Engineering
[2] Maastricht University,Department of Data Science and Knowledge Engineering (DKE), Faculty of Science and Engineering
[3] RWTH Aachen University,Center for Wind and Earthquake Engineering (CWE)
来源
关键词
Monte Carlo Tree Search; Structural design; Artificial intelligence; Civil engineering; Genetic algorithm; Reinforced concrete buildings;
D O I
暂无
中图分类号
学科分类号
摘要
Monte Carlo Tree Search (MCTS) is a search technique that in the last decade emerged as a major breakthrough for Artificial Intelligence applications regarding board- and video-games. In 2016, AlphaGo, an MCTS-based software agent, outperformed the human world champion of the board game Go. This game was for long considered almost infeasible for machines, due to its immense search space and the need for a long-term strategy. Since this historical success, MCTS is considered as an effective new approach for many other scientific and technical problems. Interestingly, civil structural engineering, as a discipline, offers many tasks whose solution may benefit from intelligent search and in particular from adopting MCTS as a search tool. In this work, we show how MCTS can be adapted to search for suitable solutions of a structural engineering design problem. The problem consists of choosing the load-bearing elements in a reference reinforced concrete structure, so to achieve a set of specific dynamic characteristics. In the paper, we report the results obtained by applying both a plain and a hybrid version of single-agent MCTS. The hybrid approach consists of an integration of both MCTS and classic Genetic Algorithm (GA), the latter also serving as a term of comparison for the results. The study’s outcomes may open new perspectives for the adoption of MCTS as a design tool for civil engineers.
引用
收藏
页码:3219 / 3236
页数:17
相关论文
共 50 条
  • [21] A TUTORIAL INTRODUCTION TO MONTE CARLO TREE SEARCH
    Fu, Michael C.
    2020 WINTER SIMULATION CONFERENCE (WSC), 2020, : 1178 - 1193
  • [22] Monte-Carlo Tree Search for Logistics
    Edelkamp, Stefan
    Gath, Max
    Greulich, Christoph
    Humann, Malte
    Herzog, Otthein
    Lawo, Michael
    COMMERCIAL TRANSPORT, 2016, : 427 - 440
  • [23] LinUCB applied to Monte Carlo tree search
    Mandai, Yusaku
    Kaneko, Tomoyuki
    THEORETICAL COMPUTER SCIENCE, 2016, 644 : 114 - 126
  • [24] Monte Carlo Tree Search for Trading and Hedging
    Vittori, Edoardo
    Likmeta, Amarildo
    Restelli, Marcello
    ICAIF 2021: THE SECOND ACM INTERNATIONAL CONFERENCE ON AI IN FINANCE, 2021,
  • [25] Information Set Monte Carlo Tree Search
    Cowling, Peter I.
    Powley, Edward J.
    Whitehouse, Daniel
    IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, 2012, 4 (02) : 120 - 143
  • [26] State Aggregation in Monte Carlo Tree Search
    Hostetler, Jesse
    Fern, Alan
    Dietterich, Tom
    PROCEEDINGS OF THE TWENTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2014, : 2446 - 2452
  • [27] Monte Carlo Tree Search with Robust Exploration
    Imagawa, Takahisa
    Kaneko, Tomoyuki
    COMPUTERS AND GAMES, CG 2016, 2016, 10068 : 34 - 46
  • [28] Multiple Pass Monte Carlo Tree Search
    McGuinness, Cameron
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 1555 - 1561
  • [29] On Monte Carlo Tree Search and Reinforcement Learning
    Vodopivec, Tom
    Samothrakis, Spyridon
    Ster, Branko
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2017, 60 : 881 - 936
  • [30] Time Management for Monte Carlo Tree Search
    Baier, Hendrik
    Winands, Mark H. M.
    IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, 2016, 8 (03) : 301 - 314