Near-field corrosion interactions between glass and corrosion resistant alloys

被引:0
|
作者
Xiaolei Guo
Stephane Gin
Hongshen Liu
Dien Ngo
Jiawei Luo
Seong H. Kim
Chandi Mohanty
John D. Vienna
Joseph V. Ryan
Gerald S. Frankel
机构
[1] Ohio State University,Department of Materials Science and Engineering
[2] CEA,Department of Chemical Engineering and Materials Research Institute
[3] DEN,undefined
[4] DE2D,undefined
[5] Université de Montpellier,undefined
[6] Pennsylvania State University,undefined
[7] Energy and Environment Directorate,undefined
[8] Pacific Northwest National Laboratory,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
This study explores the corrosion interactions between model nuclear waste glass materials and corrosion resistant alloys, under accelerated conditions that simulate the near field of a nuclear waste repository. The interactions between the corrosion of stainless steel (SS) 316, alloy G30, or alloy 625, and international simple glass or soda-lime silica glass are systematically studied. The dissimilar materials were exposed in close proximity to each other in different electrolytes at 90 °C. After exposure, the glass surface exposed near metals showed different regimes of corrosion, with distinct surface morphologies and chemistries that were likely affected by the local environment created by the localized corrosion of metals. Surface and solution analyses showed that the corrosion rate of glass was enhanced by the presence of metals. Infrared spectroscopy data suggested the local build-up of stresses in the contact area of glass, which may lead to the mechanical instability of the glass alteration layer. On the other hand, the effect of glass on metal corrosion is strongly dependent on the leaching solution. In electrolytes containing abundant aggressive anions such as Cl−, glass seems to suppress the localized corrosion of SS by the precipitation of a Si-rich surface film that protects the SS substrate from solutions. However, in less aggressive electrolytes, the corrosion rate of SS was increased by the presence of glass corrosion products. Overall, our study showed that the hidden and localized damage on glass in contact with metals may enhance the release rate of glass components compared to typical uniform glass corrosion.
引用
收藏
相关论文
共 50 条
  • [41] Friction stir welding in corrosion resistant alloys
    Lemos, Guilherme Vieira Braga
    Meinhardt, Cristian Pohl
    Dias, Allan Romario de Paula
    Reguly, Afonso
    SCIENCE AND TECHNOLOGY OF WELDING AND JOINING, 2021, 26 (03) : 227 - 235
  • [42] Looking back: Corrosion-resistant alloys
    Pollock, WI
    MATERIALS PERFORMANCE, 1999, 38 (12) : 21 - 21
  • [43] STATUS REPORT: CORROSION RESISTANT ALLOYS.
    Wilhelm, S.Mark
    Kane, Russell D.
    Petroleum Engineer International, 1987, 59 (03): : 38 - 41
  • [44] Magnesium alloys: Light, strong, and corrosion resistant
    Isor, A
    CORROSION PREVENTION & CONTROL, 2004, 51 (04): : 121 - +
  • [45] Corrosion-resistant cast magnesium alloys
    Frazier, William E.
    ADVANCED MATERIALS & PROCESSES, 2007, 165 (03): : 24 - 24
  • [46] CORROSION-RESISTANT AMORPHOUS ALLOYS.
    Shvets, V.V.
    Babei, Yu.I.
    Soviet materials science, 1984, 20 (04): : 309 - 315
  • [47] CORROSION-RESISTANT ALLOYS BASED ON NICKEL
    SVISTUNOVA, TV
    METAL SCIENCE AND HEAT TREATMENT, 1980, 22 (7-8) : 483 - 489
  • [48] Review-Corrosion-Resistant Metastable Al Alloys: An Overview of Corrosion Mechanisms
    Esquivel, J.
    Gupta, R. K.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (08)
  • [49] Tubes of Corrosion-Resistant Powder Alloys
    A. G. Suslov
    R. A. Barskaya
    Metallurgist, 2000, 44 : 536 - 537
  • [50] Tubes of corrosion-resistant powder alloys
    Suslov, AG
    Barskaya, RA
    METALLURGIST, 2000, 44 (9-10) : 536 - 537