Boundary Interpolation Problem in the Classes of Generalized Nevanlinna Matrix Functions

被引:0
|
作者
A. A. Amirshadyan
机构
[1] Donetsk National University,
来源
Mathematical Notes | 2003年 / 73卷
关键词
symmetric operator; generalized resolvent; Weyl function; boundary interpolation; Pick matrix; Nevanlinna pair;
D O I
暂无
中图分类号
学科分类号
摘要
The paper deals with the boundary indefinite interpolation problem in the classes of generalized Nevanlinna matrix functions. A one-to-one correspondence between the set of all solutions of the problem and the class of so-called \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$G$$ \end{document}-regular self-adjoint extensions of the model symmetric operator associated with the problem is established. Sufficient conditions for the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$G$$ \end{document}-regularity of self-adjoint extensions (in terms of the Weyl function) are given. A formula for the description of all the solutions of the problem is obtained.
引用
收藏
页码:163 / 167
页数:4
相关论文
共 50 条