Lie perfect, Lie central extension and generalization of nilpotency in multiplicative Lie algebras

被引:0
|
作者
Dev Karan Singh
Mani Shankar Pandey
Shiv Datt Kumar
机构
[1] Motilal Nehru National Institute of Technology Allahabad,Department of Mathematics
[2] Indian Institute of Information Technology Design and Manufacturing Kurnool,Department of Sciences
来源
关键词
multiplicative Lie algebra; commutator; nilpotent group; perfect group; central extensions; 17A99; 19G24; 20A99; 20F19;
D O I
暂无
中图分类号
学科分类号
摘要
This paper aims to introduce and explore the concept of Lie perfect multiplicative Lie algebras, with a particular focus on their connections to the central extension theory of multiplicative Lie algebras. The primary objective is to establish and provide proof for a range of results derived from Lie perfect multiplicative Lie algebras. Furthermore, the study extends the notion of Lie nilpotency by introducing and examining the concept of local nilpotency within multiplicative Lie algebras. The paper presents an innovative adaptation of the Hirsch-Plotkin theorem specifically tailored for multiplicative Lie algebras.
引用
收藏
页码:283 / 299
页数:16
相关论文
共 50 条
  • [21] Lie Nilpotency Indices of Modular Group Algebras
    Bovdi, V.
    Srivastava, J. B.
    ALGEBRA COLLOQUIUM, 2010, 17 (01) : 17 - 26
  • [22] On the Lie nilpotency indices of modular group algebras
    Siwach R.
    Sharma R.K.
    Sahai M.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2017, 58 (2): : 355 - 367
  • [23] Extension Data and Their Lie Algebras
    Khalili, Valiollah
    ALGEBRA COLLOQUIUM, 2011, 18 (03) : 461 - 474
  • [24] Multiplicative Lie algebras and Schur multiplier
    Lal, Ramji
    Upadhyay, Sumit Kumar
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (09) : 3695 - 3721
  • [25] Theory of Extensions of Multiplicative Lie Algebras
    Pandey, Mani Shankar
    Upadhyay, Sumit Kumar
    JOURNAL OF LIE THEORY, 2021, 31 (03) : 637 - 658
  • [26] ON LIE-ALGEBRAS MULTIPLICATIVE COMPLEXITY
    ZHOSHINA, SA
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1990, (04): : 75 - 77
  • [27] On the universal central extension of superelliptic affine Lie algebras
    dos Santos, Felipe Albino
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (05) : 2045 - 2055
  • [28] A generalization of extended affine Lie algebras
    Yousoftadeh, Malihe
    COMMUNICATIONS IN ALGEBRA, 2007, 35 (12) : 4277 - 4302
  • [29] TRIPLE HOMOMORPHISMS OF PERFECT LIE ALGEBRAS
    Zhou, Jianhua
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (09) : 3724 - 3730
  • [30] The structure of the invariants of perfect Lie algebras
    Campoamor-Stursberg, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (24): : 6709 - 6723