Weighted composition–differentiation operators in the uniformly closed algebra generated by weighted composition operators

被引:0
|
作者
Gajath Gunatillake
机构
[1] American University of Sharjah,
来源
关键词
Weighted composition operator; Weighted composition–differentiation operator; Primary: 47B32; Secondary: 47B33;
D O I
暂无
中图分类号
学科分类号
摘要
Let φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} be an analytic self map of the open unit disc D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document}. Assume that ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document} is an analytic map of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document}. Suppose that f is in the Hardy space of the open unit disc Hp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^p$$\end{document}. The operator that takes f into ψ·f∘φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi \cdot f \circ \varphi $$\end{document} is a weighted composition operator, and is denoted by Cψ,φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\psi ,\varphi }$$\end{document}. The operator that takes f into ψ·f′∘φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi \cdot f^\prime \circ \varphi $$\end{document} is a weighted composition-differentiation operator. We prove that some weighted composition-differentiation operators belong to the closed algebra generated by weighted composition operators in the uniform operator topology.
引用
收藏
页码:53 / 60
页数:7
相关论文
共 50 条
  • [21] Weighted Composition-differentiation Operators on the Bergman Space
    Kaikai Han
    Maofa Wang
    Complex Analysis and Operator Theory, 2021, 15
  • [22] Weighted composition-differentiation operators on the Hardy space
    Han, Kaikai
    Wang, Maofa
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2021, 15 (03)
  • [23] Weighted Composition-differentiation Operators on the Bergman Space
    Han, Kaikai
    Wang, Maofa
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2021, 15 (05)
  • [24] Complex symmetric weighted composition-differentiation operators
    Liu, Junming
    Ponnusamy, Saminathan
    Xie, Huayou
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (05): : 737 - 755
  • [25] Products of composition and differentiation operators on the weighted Bergman space
    Stevic, Stevo
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2009, 16 (04) : 623 - 635
  • [26] Weighted composition operators on weighted sequence spaces
    Luan, Doan Minh
    Khoi, Le Hai
    FUNCTION SPACES IN ANALYSIS, 2015, 645 : 199 - 215
  • [27] Differences of weighted composition operators
    Wolf, Elke
    COLLECTANEA MATHEMATICA, 2009, 60 (01) : 1 - 10
  • [28] FREDHOLM WEIGHTED COMPOSITION OPERATORS
    Lo, Ching-On
    Loh, Anthony Wai-Keung
    OPERATORS AND MATRICES, 2019, 13 (01): : 169 - 186
  • [29] Dynamics of Weighted Composition Operators
    Bes, Juan
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2014, 8 (01) : 159 - 176
  • [30] THE TOEPLITZNESS OF WEIGHTED COMPOSITION OPERATORS
    Ohno, Shuichi
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 33 (02): : 507 - 513