Optimization over the Pareto outcome set associated with a convex bi-objective optimization problem: theoretical results, deterministic algorithm and application to the stochastic case

被引:0
|
作者
Henri Bonnel
Julien Collonge
机构
[1] University of New Caledonia,ERIM
来源
关键词
Optimization over the Pareto image set; Multi-objective deterministic optimization; Multi-objective stochastic optimization; Multi-objective convex optimization ; Sample average approximation method; 90C29; 90C25; 90C15; 90C26;
D O I
暂无
中图分类号
学科分类号
摘要
Our paper consists of two main parts. In the first one, we deal with the deterministic problem of minimizing a real valued function f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} over the Pareto outcome set associated with a deterministic convex bi-objective optimization problem (BOP), in the particular case where f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} depends on the objectives of (BOP), i.e. we optimize over the Pareto set in the outcome space. In general, the optimal value U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U$$\end{document} of such a kind of problem cannot be computed directly, so we propose a deterministic outcome space algorithm whose principle is to give at every step a range (lower bound, upper bound) that contains U\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U$$\end{document}. Then we show that for any given error bound, the algorithm terminates in a finite number of steps. In the second part of our paper, in order to handle also the stochastic case, we consider the situation where the two objectives of (BOP) are given by expectations of random functions, and we deal with the stochastic problem (S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(S)$$\end{document} of minimizing a real valued function f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} over the Pareto outcome set associated with this Stochastic bi-objective Optimization Problem (SBOP). Because of the presence of random functions, the Pareto set associated with this type of problem cannot be explicitly given, and thus it is not possible to compute the optimal value V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V$$\end{document} of problem (S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(S)$$\end{document}. That is why we consider a sequence of Sample Average Approximation problems (SAA-N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document}, where N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document} is the sample size) whose optimal values converge almost surely to V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V$$\end{document} as the sample size N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document} goes to infinity. Assuming f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} nondecreasing, we show that the convergence rate is exponential, and we propose a confidence interval for V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V$$\end{document}. Finally, some computational results are given to illustrate the paper.
引用
收藏
页码:481 / 505
页数:24
相关论文
共 50 条
  • [41] Bi-objective intelligent water drops algorithm to a practical multi-echelon supply chain optimization problem
    Kayvanfar, Vahid
    Husseini, S. M. Moattar
    Karimi, Behrooz
    Sajadieh, Mohsen S.
    [J]. JOURNAL OF MANUFACTURING SYSTEMS, 2017, 44 : 93 - 114
  • [42] OPTIMIZATION OVER THE EFFICIENT SET OF MULTIPLE OBJECTIVE DISCRETE PROGRAMS USING THE EDGEWORTH-PARETO HULL IN OUTCOME SPACE
    Pham Thi Hoai
    Le Dung Muu
    Tran Ngoc Thang
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2018, 14 (04): : 581 - 594
  • [43] A bi-objective optimization of airport ferry vehicle scheduling based on heuristic algorithm: A real data case study
    Han, X.
    Zhao, P. X.
    Kong, D. X.
    [J]. ADVANCES IN PRODUCTION ENGINEERING & MANAGEMENT, 2022, 17 (02): : 183 - 192
  • [44] A stochastic bi-objective simulation-optimization model for plasma supply chain in case of COVID-19 outbreak
    Shirazi, Hossein
    Kia, Reza
    Ghasemi, Peiman
    [J]. APPLIED SOFT COMPUTING, 2021, 112
  • [45] Multi-objective Evolutionary Algorithm Based on Decomposition to Solve the Bi-objective Internet Shopping Optimization Problem (MOEA/D-BIShOP)
    Garcia-Morales, Miguel A.
    Brambila-Hernandez, Jose A.
    Fraire-Huacuja, Hector J.
    Frausto-Solis, Juan
    Cruz-Reyes, Laura
    Guadalupe Gomez-Santillan, Claudia
    Carpio Valadez, Juan Martin
    Antonio Aguirre-Lam, Marco
    [J]. ADVANCES IN COMPUTATIONAL INTELLIGENCE. MICAI 2023 INTERNATIONAL WORKSHOPS, 2024, 14502 : 326 - 336
  • [46] Robust bi-objective optimization of uncapacitated single allocation p-hub median problem using a hybrid heuristic algorithm
    Mohammad Reza Amin-Naseri
    Amin Yazdekhasti
    Ali Salmasnia
    [J]. Neural Computing and Applications, 2018, 29 : 511 - 532
  • [47] Robust bi-objective optimization of uncapacitated single allocation p-hub median problem using a hybrid heuristic algorithm
    Amin-Naseri, Mohammad Reza
    Yazdekhasti, Amin
    Salmasnia, Ali
    [J]. NEURAL COMPUTING & APPLICATIONS, 2018, 29 (09): : 511 - 532
  • [48] Multi-Objective Five-Element Cycle Optimization Algorithm Based on Multi-Strategy Fusion for the Bi-Objective Traveling Thief Problem
    Xiang, Yue
    Guo, Jingjing
    Jiang, Chao
    Ma, Haibao
    Liu, Mandan
    [J]. APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [49] Application of hybrid nature-inspired algorithm: Single and bi-objective constrained optimization of magnetic abrasive finishing process parameters
    Babbar, Atul
    Prakash, Chander
    Singh, Sunpreet
    Gupta, Munish Kumar
    Mia, Mozammel
    Pruncu, Catalin Iulian
    [J]. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2020, 9 (04): : 7961 - 7974
  • [50] Adaptation of a one-step worst-case optimal univariate algorithm of bi-objective Lipschitz optimization to multidimensional problems
    Zilinskas, Antanas
    Zilinskas, Julius
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 21 (1-3) : 89 - 98