Invertible Matrices over Finite Additively Idempotent Semirings

被引:0
|
作者
Andreas Kendziorra
Stefan E. Schmidt
Jens Zumbrägel
机构
[1] University College Dublin,Claude Shannon Institute, School of Mathematical Sciences
[2] Technische Universität Dresden,Institut für Algebra, Fachrichtung Mathematik
来源
Semigroup Forum | 2013年 / 86卷
关键词
Matrix inversion; Semirings; Lattices;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate invertible matrices over finite additively idempotent semirings. The main result provides a criterion for the invertibility of such matrices. We also give a construction of the inverse matrix and a formula for the number of invertible matrices.
引用
收藏
页码:525 / 536
页数:11
相关论文
共 50 条
  • [31] DETERMINATIONS OF WEIGHTED FINITE AUTOMATA OVER COMMUTATIVE IDEMPOTENT MF-SEMIRINGS
    He, Yong
    Xin, Gongcai
    Wang, Zhixi
    [J]. INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2012, 22 (03)
  • [32] Proper/Residually-Finite Idempotent Semirings
    Gary Griffing
    [J]. Semigroup Forum, 2013, 86 : 486 - 510
  • [33] Moore-Penrose inverse of matrices on idempotent semirings
    Pati, S
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 22 (02) : 617 - 626
  • [34] Matrices over semirings
    Ghosh, S
    [J]. INFORMATION SCIENCES, 1996, 90 (1-4) : 221 - 230
  • [35] ENDOMORPHISMS OF SEMIMODULES OVER SEMIRINGS WITH AN IDEMPOTENT OPERATION
    DUDNIKOV, PI
    SAMBORSKII, SN
    [J]. MATHEMATICS OF THE USSR-IZVESTIYA, 1992, 38 (01): : 91 - 105
  • [36] Idempotent Subreducts of Semimodules over Commutative Semirings
    Stanovsky, David
    [J]. RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2009, 121 : 33 - 43
  • [37] Duality and interval analysis over idempotent semirings
    Brunsch, Thomas
    Hardouin, Laurent
    Maia, Carlos Andrey
    Raisch, Joerg
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (10) : 2436 - 2454
  • [38] Geometric Lattices Generated by Idempotent Matrices over Finite Fields
    Zhang, Ying
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2014, 52 (01): : 52 - 61
  • [39] Factorizations of matrices over semirings
    Cho, HH
    Kim, SR
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 373 : 289 - 296
  • [40] The bideterminants of matrices over semirings
    Xue-ping Wang
    Qian-yu Shu
    [J]. Soft Computing, 2014, 18 : 729 - 742