Modular Dedekind symbols associated to Fuchsian groups and higher-order Eisenstein series

被引:0
|
作者
Jay Jorgenson
Cormac O’Sullivan
Lejla Smajlović
机构
[1] City College of New York,Department of Mathematics
[2] The CUNY Graduate Center,Department of Mathematics
[3] University of Sarajevo,Department of Mathematics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Let E(z, s) be the non-holomorphic Eisenstein series for the modular group SL(2,Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{SL}}(2,{{\mathbb {Z}}})$$\end{document}. The classical Kronecker limit formula shows that the second term in the Laurent expansion at s=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s=1$$\end{document} of E(z, s) is essentially the logarithm of the Dedekind eta function. This eta function is a weight 1/2 modular form and Dedekind expressed its multiplier system in terms of Dedekind sums. Building on work of Goldstein, we extend these results from the modular group to more general Fuchsian groups Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma }$$\end{document}. The analogue of the eta function has a multiplier system that may be expressed in terms of a map S:Γ→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S:{\Gamma }\rightarrow {{\mathbb {R}}}$$\end{document} which we call a modular Dedekind symbol. We obtain detailed properties of these symbols by means of the limit formula. Twisting the usual Eisenstein series with powers of additive homomorphisms from Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma }$$\end{document} to C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {C}}}$$\end{document} produces higher-order Eisenstein series. These series share many of the properties of E(z, s) though they have a more complicated automorphy condition. They satisfy a Kronecker limit formula and produce higher-order Dedekind symbols S∗:Γ→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^*:{\Gamma }\rightarrow {{\mathbb {R}}}$$\end{document}. As an application of our general results, we prove that higher-order Dedekind symbols associated to genus one congruence groups Γ0(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Gamma }_0(N)$$\end{document} are rational.
引用
收藏
相关论文
共 50 条