Modular symbols, Eisenstein series, and congruences

被引:3
|
作者
Heumann, Jay [1 ]
Vatsal, Vinayak [2 ]
机构
[1] Univ Wisconsin Stout, Menomonie, WI 54751 USA
[2] Univ British Columbia, Vancouver, BC V6T 1Z2, Canada
来源
关键词
PERIODS; FORMS;
D O I
10.5802/jtnb.886
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E and f be an Eisenstein series and a cusp form, respectively, of the same weight k >= 2 and of the same level N, both eigenfunctions of the Hecke operators, and both normalized so that a(1) (f) = a(1)(E) = 1. The main result we prove is that when E and f are congruent mod a prime p (which we take in this paper to be a prime of (Q) over tilde lying over a rational prime p > 2), the algebraic parts of the special values L(E, x, j) and L(f, x, j) satisfy congruences mod the same prime. More explicitly, we prove that, under certain conditions,
引用
收藏
页码:709 / 756
页数:48
相关论文
共 50 条