On the eigenvalues and spread of the generalized distance matrix of a graph

被引:0
|
作者
Maryam Baghipur
Modjtaba Ghorbani
Hilal A. Ganie
S. Pirzada
机构
[1] Shahid Rajaee Teacher Training University,Department of Mathematics, Faculty of Science
[2] JK Govt. Kashmir,Department of School Education
[3] University of Kashmir,Department of Mathematics
来源
关键词
Generalized distance matrix; Distance signless Laplacian matrix; Generalized distance spread; Transmission regular graph; 05C50; 05C12; 15A18;
D O I
暂无
中图分类号
学科分类号
摘要
Let D(G) and Tr(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{Tr}}(G)$$\end{document} be, respectively, the distance matrix and the diagonal matrix of the vertex transmissions of a connected graph G. The generalized distance matrix is defined as Tα(G)=αTr(G)+(1-α)D(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\alpha }(G)=\alpha {\mathrm{Tr}}(G)+(1-\alpha )D(G)$$\end{document}, where 0≤α≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 0\le \alpha \le 1$$\end{document}. If ∂1≥∂2≥⋯≥∂n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial _{1}\ge \partial _{2}\ge \cdots \ge \partial _{n}$$\end{document} are the eigenvalues of Tα(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\alpha }(G)$$\end{document}, the generalized distance spread (or Tα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\alpha }$$\end{document}-spread) is defined as STα(G)=∂1-∂n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{T_{\alpha }}(G)=\partial _1-\partial _n$$\end{document}. In this paper, we obtain an upper bound for the smallest generalized distance eigenvalue ∂n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial _{n}$$\end{document} in terms of different graph parameters. In particular, we show that this upper bound is better than the upper bound obtained by Cui et al. (Linear Algebra Appl 563:1–23, 2019). As an application to this upper bound, we obtain a lower bound for the generalized distance spread STα(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{T_{\alpha }}(G)$$\end{document} and discuss some of its consequences. Furthermore, we obtain a lower bound for STα(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{T_{\alpha }}(G)$$\end{document} in terms of the chromatic number χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document} of the graph G. Also, we discuss the nature of Tα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\alpha }$$\end{document}-spread STα(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{T_{\alpha }}(G)$$\end{document} under some graph operations.
引用
收藏
相关论文
共 50 条
  • [21] On the two largest distance eigenvalues of graph powers
    Xing, Rundan
    Zhou, Bo
    INFORMATION PROCESSING LETTERS, 2017, 119 : 39 - 43
  • [22] SOME PROPERTIES OF THE DISTANCE LAPLACIAN EIGENVALUES OF A GRAPH
    Aouchiche, Mustapha
    Hansen, Pierre
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2014, 64 (03) : 751 - 761
  • [23] On the least distance eigenvalues of the second power of a graph
    Fangguo He
    Journal of Applied Mathematics and Computing, 2018, 58 : 183 - 192
  • [24] Generalized derivatives of eigenvalues of a symmetric matrix
    Stechlinski, Peter
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 649 (63-95) : 63 - 95
  • [25] The generalized distance matrix
    Cui, Shu-Yu
    He, Jing-Xiang
    Tian, Gui-Xian
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 563 : 1 - 23
  • [26] SOME PROPERTIES OF GENERALIZED DISTANCE EIGENVALUES OF GRAPHS
    Ma, Yuzheng
    Shao, Yanling
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2024, 74 (01) : 1 - 15
  • [27] The Estimates of Euclid Distance for Generalized Eigenvalues of Matrces
    Zhan, Xuzhou
    Zhan, Shilin
    ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL 1: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 405 - 408
  • [28] Some properties of generalized distance eigenvalues of graphs
    Yuzheng Ma
    Yanling Shao
    Czechoslovak Mathematical Journal, 2024, 74 : 1 - 15
  • [29] The Generalized Matrix Sector Function and the Separation of Matrix Eigenvalues
    Shieh, Leang S.
    Tsai, Jason S. H.
    Yates, Robert E.
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 1985, 2 (03) : 251 - 258
  • [30] Upper and Lower Bounds for the Spectral Radius of Generalized Reciprocal Distance Matrix of a Graph
    Ma, Yuzheng
    Gao, Yubin
    Shao, Yanling
    MATHEMATICS, 2022, 10 (15)