On the eigenvalues and spread of the generalized distance matrix of a graph

被引:0
|
作者
Maryam Baghipur
Modjtaba Ghorbani
Hilal A. Ganie
S. Pirzada
机构
[1] Shahid Rajaee Teacher Training University,Department of Mathematics, Faculty of Science
[2] JK Govt. Kashmir,Department of School Education
[3] University of Kashmir,Department of Mathematics
来源
关键词
Generalized distance matrix; Distance signless Laplacian matrix; Generalized distance spread; Transmission regular graph; 05C50; 05C12; 15A18;
D O I
暂无
中图分类号
学科分类号
摘要
Let D(G) and Tr(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{Tr}}(G)$$\end{document} be, respectively, the distance matrix and the diagonal matrix of the vertex transmissions of a connected graph G. The generalized distance matrix is defined as Tα(G)=αTr(G)+(1-α)D(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\alpha }(G)=\alpha {\mathrm{Tr}}(G)+(1-\alpha )D(G)$$\end{document}, where 0≤α≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 0\le \alpha \le 1$$\end{document}. If ∂1≥∂2≥⋯≥∂n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial _{1}\ge \partial _{2}\ge \cdots \ge \partial _{n}$$\end{document} are the eigenvalues of Tα(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\alpha }(G)$$\end{document}, the generalized distance spread (or Tα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\alpha }$$\end{document}-spread) is defined as STα(G)=∂1-∂n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{T_{\alpha }}(G)=\partial _1-\partial _n$$\end{document}. In this paper, we obtain an upper bound for the smallest generalized distance eigenvalue ∂n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial _{n}$$\end{document} in terms of different graph parameters. In particular, we show that this upper bound is better than the upper bound obtained by Cui et al. (Linear Algebra Appl 563:1–23, 2019). As an application to this upper bound, we obtain a lower bound for the generalized distance spread STα(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{T_{\alpha }}(G)$$\end{document} and discuss some of its consequences. Furthermore, we obtain a lower bound for STα(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{T_{\alpha }}(G)$$\end{document} in terms of the chromatic number χ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi $$\end{document} of the graph G. Also, we discuss the nature of Tα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\alpha }$$\end{document}-spread STα(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{T_{\alpha }}(G)$$\end{document} under some graph operations.
引用
收藏
相关论文
共 50 条
  • [1] On the eigenvalues and spread of the generalized distance matrix of a graph
    Baghipur, Maryam
    Ghorbani, Modjtaba
    Ganie, Hilal A.
    Pirzada, S.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (05):
  • [2] On spectral spread of generalized distance matrix of a graph
    Pirzada, S.
    Ganie, H. A.
    Alhevaz, A.
    Baghipur, M.
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (15): : 2819 - 2835
  • [3] Bounds for the Generalized Distance Eigenvalues of a Graph
    Alhevaz, Abdollah
    Baghipur, Maryam
    Ganie, Hilal Ahmad
    Shang, Yilun
    SYMMETRY-BASEL, 2019, 11 (12):
  • [4] On the spread of the distance signless Laplacian matrix of a graph
    Pirzada, S.
    Haq, Mohd Abrar Ul
    ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2023, 15 (01) : 38 - 45
  • [5] Brouwer type conjecture for the eigenvalues of distance Laplacian matrix of a graph
    Zhou, Yuwei
    Wang, Ligong
    Chai, Yirui
    COMPUTATIONAL & APPLIED MATHEMATICS, 2025, 44 (01):
  • [6] On spectral radius of the generalized distance matrix of a graph
    Pirzada, Shariefuddin
    DISCRETE MATHEMATICS LETTERS, 2021, 7 : 21 - 23
  • [7] Brouwer type conjecture for the eigenvalues of distance signless Laplacian matrix of a graph
    Alhevaz, A.
    Baghipur, M.
    Ganie, Hilal A.
    Pirzada, S.
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (13): : 2423 - 2440
  • [8] Remoteness and distance eigenvalues of a graph
    Lin, Huiqiu
    Das, Kinkar Ch.
    Wu, Baoyindureng
    DISCRETE APPLIED MATHEMATICS, 2016, 215 : 218 - 224
  • [9] The Aα-eigenvalues of the generalized subdivision graph
    Shamsher, Tahir
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2025,
  • [10] ON THE GENERALIZED DISTANCE EIGENVALUES OF GRAPHS
    Alhevaz, A.
    Baghipur, M.
    Ganie, H. A.
    Das, K. C.
    MATEMATICKI VESNIK, 2024, 76 (1-2): : 29 - 42