Multi-trait genomic prediction using in-season physiological parameters increases prediction accuracy of complex traits in US wheat

被引:0
|
作者
Dipendra Shahi
Jia Guo
Sumit Pradhan
Jahangir Khan
Muhsin AVCI
Naeem Khan
Jordan McBreen
Guihua Bai
Matthew Reynolds
John Foulkes
Md Ali Babar
机构
[1] 3105 McCarty Hall B,Department of Agronomy
[2] Oregon State University,Department of Forest Ecosystem and Society
[3] USDA-ARS,Division of Plant and Crop Sciences, School of Biosciences
[4] CIMMYT International Maize and Wheat Improvement Center (CIMMYT),undefined
[5] University of Nottingham,undefined
来源
BMC Genomics | / 23卷
关键词
Canopy temperature; NDVI; Genomic prediction; Multi-trait genomic prediction; Spike partitioning index; Fruiting efficiency;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Increased Prediction Accuracy Using Combined Genomic Information and Physiological Traits in A Soft Wheat Panel Evaluated in Multi-Environments
    Guo, Jia
    Pradhan, Sumit
    Shahi, Dipendra
    Khan, Jahangir
    Mcbreen, Jordan
    Bai, Guihua
    Murphy, J. Paul
    Babar, Md Ali
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [22] Multi-trait, Multi-environment Deep Learning Modeling for Genomic-Enabled Prediction of Plant Traits
    Montesinos-Lopez, Osval A.
    Montesinos-Lopez, Abelardo
    Crossa, Jose
    Gianola, Daniel
    Hernandez-Suarez, Carlos M.
    Martin-Vallejo, Javier
    [J]. G3-GENES GENOMES GENETICS, 2018, 8 (12): : 3829 - 3840
  • [23] Accuracy of multi-trait genomic selection using different methods
    Mario PL Calus
    Roel F Veerkamp
    [J]. Genetics Selection Evolution, 43
  • [24] Accuracy of multi-trait genomic selection using different methods
    Calus, Mario P. L.
    Veerkamp, Roel F.
    [J]. GENETICS SELECTION EVOLUTION, 2011, 43
  • [25] KAML: improving genomic prediction accuracy of complex traits using machine learning determined parameters
    Lilin Yin
    Haohao Zhang
    Xiang Zhou
    Xiaohui Yuan
    Shuhong Zhao
    Xinyun Li
    Xiaolei Liu
    [J]. Genome Biology, 21
  • [26] KAML: improving genomic prediction accuracy of complex traits using machine learning determined parameters
    Yin, Lilin
    Zhang, Haohao
    Zhou, Xiang
    Yuan, Xiaohui
    Zhao, Shuhong
    Li, Xinyun
    Liu, Xiaolei
    [J]. GENOME BIOLOGY, 2020, 21 (01)
  • [27] Improving in-season wheat yield prediction using remote sensing and additional agronomic traits as predictors
    Gracia-Romero, Adrian
    Rufo, Ruben
    Gomez-Candon, David
    Soriano, Jose Miguel
    Bellvert, Joaquim
    Yannam, Venkata Rami Reddy
    Gulino, Davide
    Lopes, Marta S.
    [J]. FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [28] Pitfalls and Remedies for Cross Validation with Multi-trait Genomic Prediction Methods
    Runcie, Daniel
    Cheng, Hao
    [J]. G3-GENES GENOMES GENETICS, 2019, 9 (11): : 3727 - 3741
  • [29] Multi-Trait, Multi-Environment Genomic Prediction of Durum Wheat With Genomic Best Linear Unbiased Predictor and Deep Learning Methods
    Montesinos-Lopez, Osval A.
    Montesinos-Lopez, Abelardo
    Tuberosa, Roberto
    Maccaferri, Marco
    Sciara, Giuseppe
    Ammar, Karim
    Crossa, Jose
    [J]. FRONTIERS IN PLANT SCIENCE, 2019, 10
  • [30] Multi-trait genomic prediction for nitrogen response indices in tropical maize hybrids
    Danilo Hottis Lyra
    Leandro de Freitas Mendonça
    Giovanni Galli
    Filipe Couto Alves
    Ítalo Stefanine Correia Granato
    Roberto Fritsche-Neto
    [J]. Molecular Breeding, 2017, 37