Automated demarcation of requirements in textual specifications: a machine learning-based approach

被引:0
|
作者
Sallam Abualhaija
Chetan Arora
Mehrdad Sabetzadeh
Lionel C. Briand
Michael Traynor
机构
[1] University of Luxembourg,SnT Centre for Security, Reliability, and Trust
[2] Deakin University,School of Information Technology
[3] University of Ottawa,School of Electrical Engineering and Computer Science
[4] QRA Corp,undefined
来源
关键词
Textual requirements; Requirements identification and classification; Machine learning; Natural language processing;
D O I
暂无
中图分类号
学科分类号
摘要
A simple but important task during the analysis of a textual requirements specification is to determine which statements in the specification represent requirements. In principle, by following suitable writing and markup conventions, one can provide an immediate and unequivocal demarcation of requirements at the time a specification is being developed. However, neither the presence nor a fully accurate enforcement of such conventions is guaranteed. The result is that, in many practical situations, analysts end up resorting to after-the-fact reviews for sifting requirements from other material in a requirements specification. This is both tedious and time-consuming. We propose an automated approach for demarcating requirements in free-form requirements specifications. The approach, which is based on machine learning, can be applied to a wide variety of specifications in different domains and with different writing styles. We train and evaluate our approach over an independently labeled dataset comprised of 33 industrial requirements specifications. Over this dataset, our approach yields an average precision of 81.2% and an average recall of 95.7%. Compared to simple baselines that demarcate requirements based on the presence of modal verbs and identifiers, our approach leads to an average gain of 16.4% in precision and 25.5% in recall. We collect and analyze expert feedback on the demarcations produced by our approach for industrial requirements specifications. The results indicate that experts find our approach useful and efficient in practice. We developed a prototype tool, named DemaRQ, in support of our approach. To facilitate replication, we make available to the research community this prototype tool alongside the non-proprietary portion of our training data.
引用
收藏
页码:5454 / 5497
页数:43
相关论文
共 50 条
  • [31] Predicting mergers & acquisitions: A machine learning-based approach
    Zhao, Yuchen
    Bi, Xiaogang
    Ma, Qing-Ping
    INTERNATIONAL REVIEW OF FINANCIAL ANALYSIS, 2025, 99
  • [32] A Machine Learning-based Approach for The Prediction of Electricity Consumption
    Dinh Hoa Nguyen
    Anh Tung Nguyen
    2019 12TH ASIAN CONTROL CONFERENCE (ASCC), 2019, : 1301 - 1306
  • [33] A Machine Learning-Based Approach for Crop Price Prediction
    Gururaj, H. L.
    Janhavi, V.
    Lakshmi, H.
    Soundarya, B. C.
    Paramesha, K.
    Ramesh, B.
    Rajendra, A. B.
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2024, 33 (03)
  • [34] A Machine Learning-Based Lexicon Approach for Sentiment Analysis
    Sahu, Tirath Prasad
    Khandekar, Sarang
    INTERNATIONAL JOURNAL OF TECHNOLOGY AND HUMAN INTERACTION, 2020, 16 (02) : 8 - 22
  • [35] Phishing Attacks Detection A Machine Learning-Based Approach
    Salahdine, Fatima
    El Mrabet, Zakaria
    Kaabouch, Naima
    2021 IEEE 12TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2021, : 250 - 255
  • [36] Machine learning-based new approach to films review
    Mustafa Abdalrassual Jassim
    Dhafar Hamed Abd
    Mohamed Nazih Omri
    Social Network Analysis and Mining, 13
  • [37] Subtyping of hepatocellular adenoma: a machine learning-based approach
    Liu, Yongjun
    Liu, Yao-Zhong
    Sun, Lifu
    Zen, Yoh
    Inomoto, Chie
    Yeh, Matthew M.
    VIRCHOWS ARCHIV, 2022, 481 (01) : 49 - 61
  • [38] Machine Learning-Based Multilevel Intrusion Detection Approach
    Ling, Jiasheng
    Zhang, Lei
    Liu, Chenyang
    Xia, Guoxin
    Zhang, Zhenxiong
    ELECTRONICS, 2025, 14 (02):
  • [39] A machine learning-based approach for estimating available bandwidth
    Chen, Ling-Jyh
    Chou, Cheng-Fu
    Wang, Bo-Chun
    TENCON 2007 - 2007 IEEE REGION 10 CONFERENCE, VOLS 1-3, 2007, : 164 - +
  • [40] BROKEN RAIL PREDICTION WITH MACHINE LEARNING-BASED APPROACH
    Zhang, Zhipeng
    Zhou, Kang
    Liu, Xiang
    PROCEEDINGS OF THE JOINT RAIL CONFERENCE (JRC2020), 2020,