Characterization of a new tissue-engineered human skin equivalent with hair

被引:0
|
作者
Michel M. [1 ,2 ]
L'Heureux N. [1 ,3 ]
Pouliot R. [1 ]
Xu W. [1 ]
Auger F.A. [1 ]
Germain L. [1 ,4 ]
机构
[1] Lab. de Rech. des Grands Brules/LOEX, CHAUQ Pavillon Saint-Sacrement, Université Laval, Sainte-Foy
[2] Department of Oral Biology, University of Washington, Box 357132, Seattle
[3] Department of Bioengineering, University of California-San Diego, San Diego
[4] Lab. de Rech. des Grands Brules/LOEX, CHAUQ Pavillon Saint-Sacrement, 1050 Chemin Sainte-Foy, Sainte-Foy
基金
英国医学研究理事会;
关键词
Ascorbic acid; Basement membrane; Extracellular matrix; Keratinocytes;
D O I
10.1007/s11626-999-0081-x
中图分类号
学科分类号
摘要
We designed a new tissue-engineered skin equivalent in which complete pilosebaceous units were integrated. This model was produced exclusively from human fibroblasts and keratinocytes and did not contain any synthetic material. Fibroblasts were cultured for 35 d with ascorbic acid and formed a thick fibrous sheet in the culture dish. The dermal equivalent was composed of stacked fibroblast sheets and exhibited some ultrastructural organization found in normal connective tissues. Keratinocytes seeded on this tissue formed a stratified and cornified epidermis and expressed typical markers of differentiation (keratin 10, filaggrin, and transglutaminase). After 4 wk of culture, a continuous and ultrastructurally organized basement membrane was observed and associated with the expression of laminin and collagen IV and VII. Complete pilosebaceous units were obtained by thermolysin digestion and inserted in this skin equivalent in order to assess the role of the transfollicular route in percutaneous absorption. The presence of hair follicles abolished the lag-time observed during hydrocortisone diffusion and increased significantly its rate of penetration in comparison to the control (skin equivalent with sham hair insertion). Therefore, this new hairy human skin equivalent model allowed an experimental design in which the only variable was the presence of pilosebaceous units and provided new data confirming the importance of hair follicles in percutaneous absorption.
引用
收藏
页码:318 / 326
页数:8
相关论文
共 50 条
  • [21] Characterization of a new tissue-engineered wound healing model for human corneal reepithelialization
    Carrier, P
    Talbot, M
    Deschambeault, A
    Grandbois, É
    Auger, FA
    Guérin, SL
    Germain, L
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2003, 44 : U328 - U328
  • [22] Characterization of a tissue-engineered choroid
    Djigo, Aicha Dede
    Berube, Julie
    Landreville, Solange
    Proulx, Stephanie
    ACTA BIOMATERIALIA, 2019, 84 : 305 - 316
  • [23] Tissue-engineered skin: bottleneck or breakthrough
    Huang, Sha
    Fu, Xiaobing
    INTERNATIONAL JOURNAL OF BURNS AND TRAUMA, 2011, 1 (01): : 1 - 10
  • [24] Skin: The first tissue-engineered products
    Parenteau, N
    SCIENTIFIC AMERICAN, 1999, 280 (04) : 83 - 84
  • [25] Tissue-engineered skin substitutes: an overview
    Enrico Catalano
    Andrea Cochis
    Elena Varoni
    Lia Rimondini
    Barbara Azzimonti
    Journal of Artificial Organs, 2013, 16 : 397 - 403
  • [26] Stem Cells and Tissue-Engineered Skin
    Charruyer, A.
    Ghadially, R.
    SKIN PHARMACOLOGY AND PHYSIOLOGY, 2009, 22 (02) : 55 - 62
  • [27] Progress and opportunities for tissue-engineered skin
    Sheila MacNeil
    Nature, 2007, 445 : 874 - 880
  • [28] The Millefeuille principle: a new approach to tissue-engineered skin reconstruction
    Van den Berge, S.
    Dickens, S.
    Hendrickx, B.
    Vermeulen, P.
    Vranckx, J. J.
    TISSUE ENGINEERING PART A, 2008, 14 (05) : 787 - 788
  • [29] A Guide to Tissue-Engineered Skin Substitutes
    Kallis, Penelope J.
    Friedman, Adam J.
    Lev-Tov, Hadar
    JOURNAL OF DRUGS IN DERMATOLOGY, 2018, 17 (01) : 57 - 64
  • [30] Tissue-engineered skin substitutes: an overview
    Catalano, Enrico
    Cochis, Andrea
    Varoni, Elena
    Rimondini, Lia
    Azzimonti, Barbara
    JOURNAL OF ARTIFICIAL ORGANS, 2013, 16 (04) : 397 - 403